Skip to main content

Advertisement

Log in

Estimation of the distribution of reactivity for powdered cellulose pyrolysis in isothermal experimental conditions using the Bayesian inference

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bayesian inference was used to test the powdered cellulose pyrolysis, under the isothermal experimental conditions. A completely new procedure that was based on obtaining the reliable distribution functions of the effective (apparent) activation energy (E a ) values by the statistical derivation of prior and posterior functions was introduced. It has been found that the pyrolysis of the powdered cellulose can be described by the kinetics, which differs from the first-order model. It was established that the apparent activation energy value presented as average magnitude in the conversion fraction range of 0.20 ≤ α ≤ 0.65 does not represent the “lumped” kinetic parameter, so in indicated conversion range, the pyrolysis process can be described through single-step reaction model with six-eighths-order (n * = 0.75) kinetics. Based on the presented Bayesian inference results, it was assumed that mechanism of pyrolysis takes place through the decomposition reactions which start from the cellulose chains. From the main characteristics of the prior distribution, relationship between the ingredients of Bayesian inference and the cellulose characteristic energy constant (c) [which is related to the rigidity angle (ψ) as a measure of tenseness of the cellulose chains] has been established in this paper. Based on evaluated prior and posterior distributions and their characteristics, it was found that the pyrolysis process of powdered cellulose takes place probably through formation of levoglucosan, where depolymerization represents the primary reaction path. Bayesian approach can be applied to highly structured reaction systems and complex physico-chemical processes, which include the reactivity distribution of various energy counterparts, which has been often un-tractable by traditional statistical access.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agrawal R (1988a) Kinetics of reactions involved in pyrolysis of cellulose I. The three reaction model. Can J Chem Eng 66:403–412

    Article  CAS  Google Scholar 

  • Agrawal R (1988b) Kinetic of reactions involved in pyrolysis of cellulose II. The modified Kilzer-Broido model. Can J Chem Eng 66:413–418

    Article  CAS  Google Scholar 

  • Akinrinola FS, Darvell LI, Jones JM, Williams A, Fuwape JA (2014) Characterization of selected Nigerian biomass for combustion and pyrolysis applications. Energy Fuels 28:3821–3832

    Article  CAS  Google Scholar 

  • Aldrich J (1997) RA fisher and the making of maximum likelihood 1912–1922. Stat Sci 12:162–176

    Article  Google Scholar 

  • Antal M, Varhegyi G (1995) Cellulose pyrolysis kinetics: the current state of knowledge. Ind Eng Chem Res 34:703–717

    Article  CAS  Google Scholar 

  • Arora S, Lal S, Kumar S, Kumar M, Kumar M (2011) Comparative degradation kinetic studies on three biopolymers: chitin, chitosan and cellulose. Arch Appl Sci Res 3:188–201

    CAS  Google Scholar 

  • Aven T, Kvalǿy JT (2002) Implementing the Bayesian paradigm in risk analysis. Reliab Eng Sys Saf 78:195–201

    Article  Google Scholar 

  • Balogun AO, Lasode OA, McDonald AG (2014) Thermo-analytical and physico-chemical characterization of woody and non-woody biomass from an agro-ecological zone in Nigeria. Bioresources 9:5099–5113

    Article  Google Scholar 

  • Bamford CH, Tipper CFH (1980) Comprehensive Chemical kinetics. In: Bamford CH, Tipper CFH (eds.) Vol. 22, Elsevier, Amsterdam

  • Belgacem MN, Gandini A (2005) Surface modification of cellulose fibres. Polímeros: Ciência e Tecnologia 15:114–121

    Article  CAS  Google Scholar 

  • Bigger S, Scheirs J, Camino G (1998) An investigation of the kinetics of cellulose degradation under non-isothermal conditions. Polym Degrad Stab 62:33–40

    Article  CAS  Google Scholar 

  • Blasi C (1994) Numerical simulation of cellulose pyrolysis. Biomass Bioenerg 7:87–98

    Article  CAS  Google Scholar 

  • Bradbury A, Sakai Y, Shafizadeh F (1979) Kinetic model for pyrolysis of cellulose. J Appl Polym Sci 23:3271–3280

    Article  CAS  Google Scholar 

  • Burchard W (1971) Statistics of stiff chain molecules: III. Chain length dependence of the mean square radius of gyration of cellulose- and amylose-tricarbanilates. British Polym J 3:214–221

    Article  CAS  Google Scholar 

  • Cabrales L, Abidi N (2010) On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim 102:485–491

    Article  CAS  Google Scholar 

  • Capart R, Khezami L, Burnham AK (2004) Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochim Acta 417:79–89

    Article  CAS  Google Scholar 

  • Chen WH, Kuo PC (2011) Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy 36:6451–6460

    Article  CAS  Google Scholar 

  • Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Ann Rev Chem Biomol Eng 2:121–145

    Article  CAS  Google Scholar 

  • Conesa J, Caballero J, Marcilla A, Font R (1995) Analysis of different kinetic models in the dynamic pyrolysis of cellylose. Thermochim Acta 254:175–192

    Article  CAS  Google Scholar 

  • Diebold J (1994) A unified, global model for the pyrolysis of cellulose. Biomass Bioenerg 7:75–85

    Article  CAS  Google Scholar 

  • Ding HZ, Wang ZD (2008) On the degradation evolution equations of cellulose. Cellulose 15:205–224

    Article  CAS  Google Scholar 

  • Emsley AM, Stevens GC (1994) Kinetics and mechanisms of the low-temperature degradation of cellulose. Cellulose 1:26–56

    Article  CAS  Google Scholar 

  • Eom Y, Kim S, Kim SS, Chung SH (2006) Application of peak property method for estimating apparent kinetic parameters of cellulose pyrolysis reaction. J Ind Eng Chem 12:846–852

    CAS  Google Scholar 

  • Flynn JH (1997) The ‘temperature integral’—its use and abuse. Thermochim Acta 300(1–2):83–92

    Article  CAS  Google Scholar 

  • Friedman HL (1963) Kinetics of thermal degradation of char-foaming plactics from thermogravimetry—application to a phenolic resin. Polym Sci C 6:183–195

    Article  Google Scholar 

  • García Barneto A, Vila C, Ariza J, Vidal T (2011) Thermogravimetric measurement of amorphous cellulose content in flax fibre and flax pulp. Cellulose 18:17–31

    Article  Google Scholar 

  • Grønli M, Antal M, Varhegyi GX (1999) Round-robin study of cellulose pyrolysis kinetics by thermogravimetry. Ind Eng Chem Res 38:2238–2244

    Article  Google Scholar 

  • Hedwall JA (1938) Reaktionsfahigkeit Festen Stoffe, Barth JA: Leipzig

  • Iyer SK, Manjunath D, Manivasakan R (2002) Bivariate exponential distributions using linear structures. Sank Indian J Stat 64:156–166

    Google Scholar 

  • Janković B (2014) The pyrolysis process of wood biomass samples under isothermal experimental conditions—energy density considerations: application of the distributed apparent activation energy model with a mixture of distribution functions. Cellulose 21:2285–2314

    Article  Google Scholar 

  • Jovanović R (1989) Edition: the science of fiber and fiber technology. II. Cellulose natural and chemical fibers. Building Book Press, University of Belgrade, Belgrade, pp 112–118

    Google Scholar 

  • Karabatsos G, Walker SG (2006) On the normalized maximum likelihood and Bayesian decision theory. J Math Psychol 50:517–520

    Article  Google Scholar 

  • Khachani M, El Hamidi A, Halim M, Arsalane S (2014) Non-isothermal kinetic and thermodynamic studies of the dehydroxylation process of synthetic calcium hydroxide Ca(OH)2. J Mater Environ Sci 5:615–624

    CAS  Google Scholar 

  • Khawam A, Flanagan DR (2006) Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110:17315–17328

    Article  CAS  Google Scholar 

  • Kim S, Eom Y (2006) Estimation of kinetic triplet of cellulose pyrolysis reaction from isothermal kinetic results. Korean J Chem Eng 23:409–414

    Article  CAS  Google Scholar 

  • Kloczkowski A, Kolinski A (2007) Theoretical models and simulations of polymer chains. In: Mark JE (ed) Physical properties of polymers handbook. Springer Science + Business Media, New York, pp 67–83

    Chapter  Google Scholar 

  • Langston PA, Burbidge AS, Jones TF, Simmons MJH (2001) Particle and droplet size analysis from chord measurements using Bayes theorem. Powder Technol 116:33–42

    Article  CAS  Google Scholar 

  • Lédé J (2012) Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose. J Anal Appl Pyrol 94:17–32

    Article  Google Scholar 

  • Lee PM (2012) Bayesian statistics: an introduction, 4th edn. Wiley, London, pp 36–77

    Google Scholar 

  • Lee G, Nowak W, Jaroniec J, Zhang Q, Marszalek PE (2004) Molecular dynamics simulations of forced conformational transitions in 1,6-linked polysaccharides. Biophys J 87:1456–1465

    Article  CAS  Google Scholar 

  • Lesaffre E, Lawson A (2012) Bayesian biostatistics—statistics in practice, part I. Basic concepts in Bayesian methods. Wiley, London, pp 106–114

    Google Scholar 

  • Lester E, Watts D, Cloke M, Langston P (2003) Determining the composition of binary cial blends using Bayes theorem. Fuel 82:117–125

    Article  CAS  Google Scholar 

  • Liao YF, Wang SR, Ma XQ (2004) Study of reaction mechanisms in cellulose pyrolysis. Prepr Pap Am Chem Soc Div Fuel Chem 49(1):407–411

    CAS  Google Scholar 

  • Liau LCK, Hsieh YP (2005) Kinetic analysis of poly(vinyl butyral)/glass ceramic thermal degradation using non-linear heating functions. Polym Degrad Stab 89:545–552

    Article  CAS  Google Scholar 

  • Liu Z, Jiang Z, Fei B, Liu X (2013) Thermal decomposition characteristics of Chinese fir. Bioresources 8:5014–5024

    Google Scholar 

  • Luo N, Cao F, Zhao X, Xiao T, Fang D (2007) Thermodynamic analysis of aqueous-reforming of polylols for hydrogen generation. Fuel 86:1727–1736

    Article  CAS  Google Scholar 

  • Martz H, Waller R (1985) Bayesian reliability analysis. Wiley, New York, pp 35–45

    Google Scholar 

  • MATLAB® codes, http://www.mathworks.com/products/matlab/examples.html, 2014

  • Mayo DG (2010) An error in the argument from conditionality and sufficiency to the likelihood principle. In: Mayo DG, Spanos A (eds) Error and inference—recent exchanges on experimental reasoning, reliability and the objectivity and rationality of science. Cambridge University Press, Cambridge, pp 305–314

    Google Scholar 

  • Mazeau K, Wyszomirski M (2012) Modelling of Congo red adsorption on the hydrophobic surface of cellulose using molecular dynamics. Cellulose 19:1495–1506

    Article  CAS  Google Scholar 

  • Mettler MS, Mushrif SH, Paulsen AD, Javadekar AD, Vlachos DG, Dauenhauer PJ (2012) Revealing pyrolysis chemistry for biofuels production: conversion of cellulose to furans and small oxygenates. Energy Environ Sci 5:5414–5424

    Article  CAS  Google Scholar 

  • Milne TA, Brennan AH, Glenn BH (1990) Sourcebook of methods of analysis for biomass and biomass conversion processes. Elsevier, London, pp 51–67

    Google Scholar 

  • Mui ELK, Cheung WH, Lee VKC, McKay G (2010) Compensation effect during the pyrolysis of tyres and bamboo. Waste Manag 30:821–830

    Article  CAS  Google Scholar 

  • Muller-Hagedorn M, Bockhorn H, Krebs L, Muller U (2003) A comparative kinetic study on the pyrolysis of three different wood species. J Anal Appl Pyrol 68–69:231–249

    Article  Google Scholar 

  • Myung JI, Navarro DJ, Pitt MA (2006) Model selection by normalized maximum likelihood. J Math Psychol 50:167–179

    Article  Google Scholar 

  • OriginLab Tutorial, The nonlinear curve fitter (NLFit) (2014) using the origin’s fitting function builder. ©OriginLab Corporation, http://www.originlab.com

  • Poletto M, Pistor V, Santana RMC, José Zattera A (2012) Materials produced from plant biomass. Part II: evaluation of crystallinity and degradation kinetics of cellulose. Mater Res 15:421–427

    Article  CAS  Google Scholar 

  • Robert C (2001) The Bayesian choice: from decision-theoretic motivations to computational implementation, 2nd edn. Springer, New York, pp 38–43

    Google Scholar 

  • Rohde CA (2014) Introductory statistical inference with the likelihood function, Chapter 14. Bayesian inference. Springer, New York, pp 167–181. ISBN 978-3-319-10460-7

    Book  Google Scholar 

  • Royall R (1997) Statistical evidence: a likelihood paradigm. Chapman & Hall/CRC, New York, pp 1–31

    Google Scholar 

  • Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Pascual-Cosp J, Benítez-Guerrero M, Criado JM (2011) An improved model for the kinetic description of the thermal degradation of cellulose. Cellulose 18:1487–1498

    Article  Google Scholar 

  • Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM (2013) Generalized master plots as a straightforward approach for determining the kinetic model: the case of cellulose pyrolysis. Thermochim Acta 552:54–59

    Article  Google Scholar 

  • Sanders EB, Goldsmith AI, Seeman JI (2002) A model that distinguishes the pyrolysis of d-glucose, d-fructose, and sucrose from that of cellulose. Application to the understanding of cigarette smoke formation. J Anal Appl Pyrol 66:29–50

    Article  Google Scholar 

  • Seshadri V, Westmoreland PR (2012) Concerted reactions and mechanism of glucose pyrolysis and implications for cellulose kinetics. J Phys Chem A 116:11997–12013

    Article  CAS  Google Scholar 

  • Shaik SM, Koh CY, Nicholas Sharratt P, Tan Reginald BH (2013) Influence of acids and alkalis on transglycosylation and β-elimination pathway kinetics during cellulose pyrolysis. Thermochim Acta 566:1–9

    Article  CAS  Google Scholar 

  • Sonobe T, Worasuwannarak N (2008) Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel 87:414–421

    Article  CAS  Google Scholar 

  • Tang J, Zhuang Q (2009) A global sensitivity analysis and Bayesian inference framework for improving the parameter estimation and prediction of a process-based Terrestrial Ecosystem Model. J Geophys Res 114:D15303–D15322

    Article  Google Scholar 

  • Varhegyi G, Antal M (1989) Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugar cane bagasse. Energy Fuels 3:329–335

    Article  CAS  Google Scholar 

  • Vyazovkin S (1996) A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet 28:95–101

    Article  CAS  Google Scholar 

  • Vyazovkin S (1997a) Advanced isoconversional method. J Therm Anal Calorim 49:1493–1499

    Article  CAS  Google Scholar 

  • Vyazovkin S (1997b) Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem 18(3):393–402

    Article  CAS  Google Scholar 

  • Vyazovkin S (2001) Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem 22(2):178–183

    Article  CAS  Google Scholar 

  • Vyazovkin S, Wight CA (1997) Isothermal and nonisothermal reaction kinetics in solids: in search of ways toward consensus. J Phys Chem A 101:8279–8284

    Article  CAS  Google Scholar 

  • Vyazovkin S, Wight CA (1999) Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta 340–341:53–68

    Article  Google Scholar 

  • Williams PT, Besler S (1996) The influence of temperature and heating rate on the pyrolysis of biomass. Renew Energy 7:233–250

    Article  CAS  Google Scholar 

  • Włodarczyk P (2012) Experimental and theoretical studies on mutarotation in supercooled liquid state. PhD Thesis (A thesis submitted for the degree of Philosophiae Doctor), Prof. Paluch, M., Institute of Physics, Uniwersytecka 4, 40-008 Katowice, University of Silesia, Poland, 2012, pp. 63–68

  • Yang H, Yan R, Chin T, Tee DL, Chen H, Zheng C (2004) Thermogravimetric analysis—fourier transform infrared analysis of palm oil waste pyrolysis. Energy Fuels 18:1814–1821

    Article  CAS  Google Scholar 

  • Zhang Y, Liu C, Xie H (2014) Mechanism studies on β-D-glucopyranose pyrolysis by density functional theory methods. J Anal Appl Pyrol 105:23–34

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was partially supported by the Ministry of Science and Environmental Protection of Serbia under project No. 172015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan Janković.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janković, B. Estimation of the distribution of reactivity for powdered cellulose pyrolysis in isothermal experimental conditions using the Bayesian inference. Cellulose 22, 2283–2303 (2015). https://doi.org/10.1007/s10570-015-0653-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0653-8

Keywords

Navigation