Skip to main content
Log in

Construction of chitin/graphene oxide hybrid hydrogels

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Graphene oxide (GO), an excellent nanofiller, was incorporated into chitin to construct chitin/GO hybrid hydrogels by cross-linking with epichlorohydrin. The structure of the hybrid hydrogels was investigated by Fourier-transform infrared (FT-IR) spectroscopy, wide-angle X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy. The results revealed that the hybrid hydrogels possessed a layered porous structure with bi-crosslinked networks, which played an important role in improving their mechanical properties. Compared with pure chitin hydrogels, an increase of 24.7 and 262.7 % in strain and compressive strength, respectively, was achieved with addition of 3.2 wt% GO. Incorporation of this amount of GO in a hybrid hydrogel did not affect the toxicity of chitin towards L02 cells, suggesting good biocompatibility. All these results suggest that chitin/GO hydrogels have potential applications in the field of tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Austin PR (1975) Solvents for and purification of chitin. US Patent 3,892,731

  • Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470

    Article  CAS  Google Scholar 

  • Chang C, Chen S, Zhang L (2011a) Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. J Mater Chem 21(11):3865–3871

    Article  CAS  Google Scholar 

  • Chang Y, Yang S, Liu J, Dong E, Wang Y, Cao A, Liu Y, Wang H (2011b) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200(3):201–210

    Article  CAS  Google Scholar 

  • Depan D, Shah JS, Misra RDK (2013) Degradation mechanism and increased stability of chitosan-based hybrid scaffolds cross-linked with nanostructured carbon: process-structure-functional property relationship. Polym Degrad Stab 98:2331–2339

    Article  CAS  Google Scholar 

  • Depan D, Pesacreta TC, Misra RDK (2014) The synergistic effect of hybrid graphene oxide-chitosan system and biomimetic mineralization on osteoblasts functions. Biomater Sci 2:264–274

    Article  CAS  Google Scholar 

  • Ding B, Cai J, Huang J, Zhang L, Chen Y, Shi X, Du Y, Kuga S (2012) Facile preparation of robust and biocompatible chitin aerogels. J Mater Chem 22:5801–5809

    Article  CAS  Google Scholar 

  • Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  • Duan B, Chang C, Ding B, Cai J, Xu M, Feng S, Ren J, Shi X, Du Y, Zhang L (2013) High strength films with gas-barrier fabricated from chitin solution dissolved at low temperature. J Mater Chem 1:1867–1874

    Article  CAS  Google Scholar 

  • Egawa EY, Kato K, Hiraoka M, Nakaji-Hirabayashi T, Iwata H (2011) Enhanced proliferation of neural stem cells in a collagen hydrogel incorporating engineered epidermal growth factor. Biomaterials 32(21):4737–4743

    Article  CAS  Google Scholar 

  • Eosoly S, Brabazon D, Lohfeld S, Looney L (2010) Selective laser sintering of hydroxyapatite/poly-caprolactone scaffolds. Acta Biomater 6(7):2511–2517

    Article  CAS  Google Scholar 

  • Fan H, Wang L, Zhao K, Li N, Shi Z, Ge Z, Jin Z (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 11(9):2345–2351

    Article  CAS  Google Scholar 

  • Guo Y, Duan B, Zhou J, Zhu P (2014) Chitin/graphene oxide composite films with enhanced mechanical properties prepared in NaOH/urea aqueous solution. Cellulose 21(3):1781–1791

    Article  CAS  Google Scholar 

  • Haraguchi K, Takehisa T, Fan S (2002) Effects of clay content on the properties of nanocomposite hydrogels composed of poly (N-isopropylacrylamide) and clay. Macromolecules 35(27):10162–10171

    Article  CAS  Google Scholar 

  • He M, Wang Z, Cao Y, Zhao Y, Duan B, Chen Y, Xu M, Zhang L (2014) Construction of chitin/PVA composite hydrogels with jellyfish gel-like structure and their biocompatibility. Biomacromolecules 15(9):3358–3365

    Article  CAS  Google Scholar 

  • Hu X, Du Y, Tang Y, Wang Q, Feng T, Yang J, Kennedy JF (2007) Solubility and property of chitin in NaOH/urea aqueous solution. Carbohydr Polym 70(4):451–458

    Article  CAS  Google Scholar 

  • Huang Y, Zhong Z, Duan B, Wang Y, Zhang L (2014) Novel fibers fabricated directly from chitin solution and their application as wound dressing. J Mater Chem B 2:3427–3432

    Article  CAS  Google Scholar 

  • Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  • Ifuku S, Nogi M, Abe K, Yoshioka M, Morimoto M, Saimoto H, Yano H (2009) Preparation of chitin nanofibers with a uniform width as a-chitin from crab shells. Biomacromolecules 10(6):1584–1588

    Article  CAS  Google Scholar 

  • Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1879

    Article  CAS  Google Scholar 

  • Lee DW, De Los Santos VL, Seo JW, Leon Felix L, Bustamante DA, Cole JM, Barnes CHW (2010) The structure of graphite oxide: investigation of its surface chemical groups. J Phys Chem B 114(17):5723–5728

    Article  CAS  Google Scholar 

  • Li M, Wang Y, Liu Q, Li Q, Cheng Y, Zheng Y, Xi T, Wei S (2013) In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. J Mater Chem B 1:475–484

    Article  CAS  Google Scholar 

  • Liu Y, Chan-Park MB (2009) Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials 30(2):196–207

    Article  Google Scholar 

  • Lu Y, Sun Q, She X, Xia Y, Liu Y, Li J, Yang D (2013) Fabrication and characterisation of α-chitin nanofibers and highly transparent chitin films by pulsed ultrasonication. Carbohydr Polym 98(2):1497–1504

    Article  CAS  Google Scholar 

  • Min BM, Lee SW, Lim JN, You Y, Lee TS, Kang PH, Park WH (2004) Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45(21):7137–7142

    Article  CAS  Google Scholar 

  • Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34(7):641–678

    Article  CAS  Google Scholar 

  • Pinho E, Henriques M, Soares G (2014) Cyclodextrin/cellulose hydrogel with gallic acid to prevent wound infection. Cellulose 21(6):4519–4530

    Article  CAS  Google Scholar 

  • Pok S, Myers JD, Madihally SV, Jacot JG (2013) A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering. Acta Biomater 9(3):5630–5642

    Article  CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    Article  CAS  Google Scholar 

  • Shin SR, Aghaei-Ghareh-Bolagh B, Dang T, Topkaya SN, Gao X, Yang S, Jung S, Oh J, Dokmeci MR, Tang X, Khademhosseini A (2013) Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide. Adv Mater 25(44):6385–6639

    Article  CAS  Google Scholar 

  • Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212

    Article  CAS  Google Scholar 

  • Tamura H, Nagahama H, Tokura S (2006) Preparation of chitin hydrogel under mild conditions. Cellulose 13(4):357–364

    Article  CAS  Google Scholar 

  • Terbojevich M, Carraro C, Cosani A, Marsano E (1988) Solution studies of the chitin-lithium chloride-N,N-di-methylacetamide system. Carbohydr Res 180(1):73–86

    Article  CAS  Google Scholar 

  • Thein-han WW, Misra RDK (2008) Chitosan as a scaffold matrix in tissue engineering. Mater Sci Technol 34:1062–1075

    Article  Google Scholar 

  • Thein-han WW, Misra RDK (2009) Three-dimensional chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering: structure and interaction with pre-osteoblasts. J Mater 61:41–44

    CAS  Google Scholar 

  • Thein-han WW, Saikhun J, Pholpramoo C, Misra RDK, Kitiyanant Y (2009) Chitosan-gelatin scaffolds for tissue engineering: physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP-buffalo embryonic stem cells. Acta Biomater 9:3453–3466

    Article  Google Scholar 

  • Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, Cui D (2011a) Biocompatibility of graphene oxide. Nanoscale Res Lett 6:8

    Google Scholar 

  • Wang X, Wang H, Brown HR (2011b) Jellyfish gel and its hybrid hydrogels with high mechanical strength. Soft Matter 7:211–219

    Article  CAS  Google Scholar 

  • Xu Y, Wu Q, Sun Y, Bai H, Shi G (2010) There-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4(12):7358–7362

    Article  CAS  Google Scholar 

  • Yamaguchi Y, Nge TT, Takemura A, Hori N, Ono H (2005) Characterization of uniaxially aligned chitin film by 2D FT-IR spectroscopy. Biomacromolecules 6(4):1941–1947

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Guo or Ping Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Duan, B., Cui, L. et al. Construction of chitin/graphene oxide hybrid hydrogels. Cellulose 22, 2035–2043 (2015). https://doi.org/10.1007/s10570-015-0630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0630-2

Keywords

Navigation