Skip to main content
Log in

Effect of surface-modified montmorillonite on viscosity and gelation behavior of cellulose/NaOH solution

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this work, rheological properties of cellulose solution incorporated with different concentration of surface-modified montmorillonite (SM-MMT) were investigated. Thermal behavior analyses of cellulose solutions were performed using rheological tests; including determination of various factors to estimate the gelation temperature and time. The results showed lower viscosities for composite samples compared to pristine cellulose solution which can be regarded as a result of good dispersion of SM-MMT through cellulose matrix. Moreover, gelation point was dependent on SM-MMT concentration. There was a tendency for an increase in gelation temperature with SM-MMT content from 0 to 10 wt%. Also, gelation time significantly increased with incorporation of nanoparticles, indicating SM-MMT effect on weakening of hydrogen bond strength between cellulose chains which limited cellulose aggregation. Fourier transform infrared and Raman spectroscopy were also used to evaluate structural differences between composite foams prepared from cellulose solutions. FTIR and Raman spectra confirmed hydrogen bond formation between cellulose matrix and SM-MMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmadzadeh S, Nasirpour A, Keramat J, Hamdami N, Behzad T, Desobry S (2014) Nanoporous cellulose nanocomposite foams as high insulated food packaging materials. Colloid Surf A. doi:10.1016/j.colsurfa.2014.12.037

    Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R 28:1–63

    Article  Google Scholar 

  • Bagheri M, Rabieh S (2013) Preparation and characterization of cellulose-ZnO nanocomposite based on ionic liquid ([C4mim]Cl). Cellulose 20:699–705

    Article  CAS  Google Scholar 

  • Blachot JF, Brunet N, Navard P, Cavaille JY (1998) Rheological behaviour of cellulose/(N-methylmorpholine N-oxide-water) solutions. Rheol Acta 37:107–114

    Article  CAS  Google Scholar 

  • Brown JM, Curliss D, Vaia RA (2000) Thermoset-layered silicate nanocomposites: quaternary ammonium montmorillonite with primary diamine cured epoxies. Chem Mater 12:3376–3384

    Article  CAS  Google Scholar 

  • Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189

    Article  CAS  Google Scholar 

  • Cai J, Wang LX, Zhang L (2007) Influence of coagulation temperature on pore size and properties of cellulose membranes prepared from NaOH urea aqueous solution. Cellulose 14:205–215

    Article  CAS  Google Scholar 

  • Cassagnau P, Barrès C (2010) Rheological behavior of rubber nanocomposites. In: Thomas S, Stephen R (eds) Rubber nanocomposites: preparations, properties and applications. Wiley, Chichester, pp 353–390

    Google Scholar 

  • Duman O, Tunc S, Cetinkaya A (2012) Electrokinetic and rheological properties of kaolinite in poly(diallyldimethylammonium chloride), poly(sodium 4-styrene sulfonate) and poly(vinyl alcohol) solutions. Colloids Surf A 394:23–32

    Article  CAS  Google Scholar 

  • Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    Article  CAS  Google Scholar 

  • Fischer S, Leipner H, Thummler K, Brendler B, Peters J (2003) Inorganic molten salts as solvents for cellulose. Cellulose 10:227–236

    Article  CAS  Google Scholar 

  • Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose–NaOH aqueous solutions. Biomacromolecules 9:269–277

    Article  CAS  Google Scholar 

  • He C, Wang Q (1999) Rheological properties of cellulose solution in paraformaldehyde/dimethyl sulfoxide system. Polym Adv Technol 10:487–492

    Article  CAS  Google Scholar 

  • Hirrien M, Chevillard C, Desbrieres J, Axelos MAV, Rinaudo M (1998) Thermogelation of methylcelluloses: new evidence for understanding the gelation mechanism. Polymer 39:6251–6259

    Article  CAS  Google Scholar 

  • Kader MA, Lyu M, Nah C (2006) A study on melt processing and thermal properties of fluoroelastomer nanocomposites. Compos Sci Technol 66:1431–1443

    Article  CAS  Google Scholar 

  • Kobayashi K, Huang C, Lodge TP (1999) Thermo-reversible gelation of aqueous methyl cellulose solutions. Macromolecules 32:7070–7077

    Article  CAS  Google Scholar 

  • Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8:1728–1734

    Article  CAS  Google Scholar 

  • Litchfield DW, Baird DG (2006) The rheology of high aspect ratio nanoparticle filled liquids. Rheol Rev 1–60

  • Lu F, Cheng B, Song J, Liang Y (2012a) Rheological characterization of concentrated cellulose solutions in 1-allyl-3-methylimidazolium chloride. J Appl Polym Sci 124:3419–3425

    Article  CAS  Google Scholar 

  • Lu Y, Wu J, Zhang J, Niu Y, Liu CY, He J, Zhang J (2012b) Rheological properties of cellulose/ionic liquid/dimethylsulfoxide (DMSO) solutions. Polymer 53:2524–2531

    Article  Google Scholar 

  • Mihranyan A, Edsman K, Strømme M (2007) Rheological properties of cellulose hydrogels prepared from Cladophora cellulose powder. Food Hydrocoll 21:267–272

    Article  CAS  Google Scholar 

  • Morris ER (1990) Shear-thinning of ‘random coil’ polysaccharides: characterization by two parameters from a simple linear plot. Carbohydr Polym 13:85–96

    Article  CAS  Google Scholar 

  • Morris ER, Cutler AN, Ross-Murphy S, Rees DA (1981) Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydr Polym 1:5–21

    Article  CAS  Google Scholar 

  • Navard P, Haudin JM, Quenin I, Peguy A (1986) Shear rheology of diluted solutions of high molecular weight cellulose. J Appl Polym Sci 32:5829–5839

    Article  CAS  Google Scholar 

  • Petrovan S, Collier JR, Negulescu II (2001) Rheology of cellulosic N-methylmorpholine oxide monohydrate solutions of different degrees of polymerization. J Appl Polym Sci 79:396–405

    Article  CAS  Google Scholar 

  • Pignon F, Magnin A, Piau JM (1998) Thixotropic behavior of clay dispersions: combinations of scattering and rheometric techniques. J Rheol 42:1349–1373

    Article  CAS  Google Scholar 

  • Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose-NaOH solutions. Biomacromolecues 4:259–264

    Article  CAS  Google Scholar 

  • Schulz L, Seger B, Burchard W (2000) Structures of cellulose in solution. Macromol Chem Phys 201:2008–2022

    Article  CAS  Google Scholar 

  • Sescousse R, Le KA, Ries ME, Budtova T (2010) Viscosity of cellulose-imidazolium-based ionic liquid solutions. J Phys Chem B 114:7222–7228

    Article  CAS  Google Scholar 

  • Silva SMC, Pinto FV, Antunes FE, Miguel MG, Sousa JJS, Pais AACC (2008) Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions. J Colloid Interface Sci 327:333–340

    Article  CAS  Google Scholar 

  • Tunc S, Duman O (2012) Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Appl Clay Sci 48:414–424

    Article  Google Scholar 

  • Tunc S, Duman O, Uysal R (2008) Electrokinetic and rheological behaviors of sepiolite suspensions in the presence of poly(acrylic acid sodium salt)s, polyacrylamides, and poly(ethylene glycol)s of different molecular weights. J Appl Polym Sci 109:1850–1860

    Article  CAS  Google Scholar 

  • Tunc S, Duman O, Cetinkaya A (2011) Electrokinetic and rheological properties of sepiolite suspensions in the presence of hexadecyltrimethylammonium bromide. Colloids Surf A 377:123–129

    Article  CAS  Google Scholar 

  • Tunc S, Duman O, Kanci B (2012) Rheological measurements of Na-bentonite and sepiolite particles in the presence of tetradecyltrimethylammonium bromide, sodium tetradecyl sulfonate and Brij 30 surfactants. Colloids Surf A 398:37–47

    Article  CAS  Google Scholar 

  • Yang Q, Qin X, Zhang L (2011) Properties of cellulose films prepared from NaOH/urea/zincate aqueous solution at low temperature. Cellulose 18:681–688

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by Center for International Scientific Studies & Collaboration (CISSC) and French Embassy in Tehran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safoura Ahmadzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadzadeh, S., Nasirpour, A., Keramat, J. et al. Effect of surface-modified montmorillonite on viscosity and gelation behavior of cellulose/NaOH solution. Cellulose 22, 1829–1839 (2015). https://doi.org/10.1007/s10570-015-0597-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0597-z

Keywords

Navigation