Skip to main content
Log in

In situ synthesis of conductive polypyrrole on electrospun cellulose nanofibers: scaffold for neural tissue engineering

  • Communication
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This study reports the synthesis of conductive polypyrrole (PPy) on electrospun cellulose nanofibers. The cellulose nanofibers were electrospun via cellulose acetate and surface modified using in situ pyrrole polymerization. PPy adhered to the cellulose nanofiber surface as small particles and caused a 105 fold increase in conductivity compared to unmodified cellulose nanofibers. In addition, tests revealed no cytotoxic potential for the PPy coated cellulose nanofiber materials. In vitro culturing using SH-SY5Y human neuroblastoma cells indicated enhanced cell adhesion on the PPy coated cellulose material. SH-SY5Y cell viability was evident up to 15 days of differentiation and cells adhered to the PPy coated cellulose nanofibers and altered their morphology to a more neuron like phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Beamson G, Briggs D (1992) High resolution XPS of organic polymers: the Scienta ESCA300 database. Wiley, Chichester

    Google Scholar 

  • Bendrea AD, Cianga L, Cianga I (2011) Review paper: progress in the field of conducting polymers for tissue engineering applications. J Biomater Appl 26(1):3–84

    Article  CAS  Google Scholar 

  • Biedler J, Helson L, Spengler B (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 33(11):2643–2652

    CAS  Google Scholar 

  • Carlsson D, Nyström G, Zhou Q, Berglund L, Nyholm L, Stromme M (2012) Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties. J Mater Chem 22(36):19014–19024

    Article  CAS  Google Scholar 

  • Chen W, Weng S, Zhang F, Allen S, Li X, Bao L, Lam RHW, Macoska JA, Merajver SD, Fu J (2013) Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies. ACS Nano 7(1):566–575

    Article  CAS  Google Scholar 

  • Cooper A, Bhattarai N, Zhang M (2011) Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydr Polym 85(1):149–156

    Article  CAS  Google Scholar 

  • Das N, Choi M, Jung K, Park J, Lee H, Kim S, Chai Y (2012) Lipopolysaccharide-mediated protein expression profiling on neuronal differentiated sh-sy5y cells. BioChip J 6(2):165–173

    Article  CAS  Google Scholar 

  • Fonner JM, Forciniti L, Nguyen H, Byrne JD, Kou Y-F, Syeda-Nawaz J, Schmidt CE (2008) Biocompatibility implications of polypyrrole synthesis techniques. Biomed Mat 3(3):034124

    Article  Google Scholar 

  • Grafahrend D, Heffels KH, Beer M, Gasteier P, Möller M, Boehm G, Dalton P, Groll J (2011) Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation. Nat Mater 10(1):67–73

    Article  CAS  Google Scholar 

  • Guimard N, Gomez N, Schmidt C (2007) Conducting polymers in biomedical engineering. Prog Polym Sci (Oxford) 32(8–9):876–921

    Article  CAS  Google Scholar 

  • Härdelin L, Thunberg J, Perzon E, Westman G, Walkenström P, Gatenholm P (2012) Electrospinning of cellulose nanofibers from ionic liquids: the effect of different cosolvents. J Appl Polym Sci 125(3):1901–1909

    Article  Google Scholar 

  • He X, Xiao Q, Lu C, Wang Y, Zhang X, Zhao J, Zhang W, Zhang X, Deng Y (2014) Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromolecules 15(2):618–627

    Article  CAS  Google Scholar 

  • Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res Part A 76(2):431–438

    Article  Google Scholar 

  • Jain A, Betancur M, Patel G, Valmikinathan C, Mukhatyar V, Vakharia A, Pai S, Brahma B, MacDonald T, Bellamkonda R (2014) Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres. Nat Mater 13(3):308–316

    Article  CAS  Google Scholar 

  • Jia B, Li Y, Yang B, Xiao D, Zhang S, Rajulu A, Kondo T, Zhang L, Zhou J (2013) Effect of microcrystal cellulose and cellulose whisker on biocompatibility of cellulose-based electrospun scaffolds. Cellulose 20(4):1911–1923

    Article  CAS  Google Scholar 

  • Kaynak A, Beltran R (2003) Effect of synthesis parameters on the electrical conductivity of polypyrrole-coated poly (ethylene terephthalate) fabrics. Polym Int 52:1021–1026

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci (Oxford) 26(9):1561–1603

    Article  CAS  Google Scholar 

  • Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30(26):4325–4335

    Article  CAS  Google Scholar 

  • Li WJ, Laurencin C, Caterson E, Tuan R, Ko F (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60(4):613–621

    Article  CAS  Google Scholar 

  • Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Part B: Polym Phys 40(18):2119–2129

    Article  CAS  Google Scholar 

  • Liu X, Gilmore KJ, Moulton SE, Wallace GG (2009) Electrical stimulation promotes nerve cell differentiation on polypyrrole/poly (2-methoxy-5 aniline sulfonic acid) composites. J Neural Eng 6(6):065,002

    Article  Google Scholar 

  • Malarkey EB, Fisher KA, Bekyarova E, Liu W, Haddon RC, Parpura V (2009) Conductive single-walled carbon nanotube substrates modulate neuronal growth. Nano Lett 9(1):264–268

    Article  CAS  Google Scholar 

  • Miyamoto T, Takahashi S, Ito H, Inagaki H, Noishiki Y (1989) Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23(1):125–133

    Article  CAS  Google Scholar 

  • Muller D, Silva J, Rambo C, Barra G, Dourado F, Gama F (2013) Neuronal cells behavior on polypyrrole coated bacterial nanocellulose three-dimensional (3d) scaffolds. J Biomater Sci Polym Ed 24(11):1368–1377

    Article  CAS  Google Scholar 

  • Nyström G, Mihranyan A, Razaq A, Lindström T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114(12):4178–4182

    Article  Google Scholar 

  • Pahlman S, Hoehner J, Nanberg E, Hedborg F, Fagerstrom S, Gestblom C, Johansson I, Larsson U, Lavenius E, Ortoft E, Soderholm H (1995) Differentiation and survival influences of growth factors in human neuroblastoma. Eur J Cancer Part A: Gen Top 31(4):453–458

    Article  Google Scholar 

  • Pham Q, Sharma U, Mikos A (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12(5):1197–1211

    Article  CAS  Google Scholar 

  • Prabhakaran MP, Venugopal JR, Chyan TT, Hai LB, Chan CK, Lim AY, Ramakrishna S (2008) Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng—Part A 14(11):1787–1797

    Article  CAS  Google Scholar 

  • Razaq A, Nyholm L, Sjödin M, Strømme M, Mihranyan A (2012) Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes. Adv Energy Mater 2(4):445–454

    Article  CAS  Google Scholar 

  • Rodríguez K, Renneckar S, Gatenholm P (2011) Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS Appl Mater Interfac 3(3):681–689

    Article  Google Scholar 

  • Schmidt C, Shastri V, Vacanti J, Langer R (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci USA 94(17):8948–8953

    Article  CAS  Google Scholar 

  • Selinummi J, Sarkanen JR, Niemistö A, Linne ML, Ylikomi T, Yli-Harja O, Jalonen TO (2006) Quantification of vesicles in differentiating human sh-sy5y neuroblastoma cells by automated image analysis. Neurosci Lett 396(2):102–107

    Article  CAS  Google Scholar 

  • Shi Z, Gao H, Feng J, Ding B, Cao X, Kuga S, Wang Y, Zhang L, Cai J (2014) In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration. Angew Chem—Int Ed 53(21):5380–5384

    Article  CAS  Google Scholar 

  • Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16(6):229–241

    Article  CAS  Google Scholar 

  • Wang Z, Tammela P, Zhang P, Strømme M, Nyholm L (2014) Efficient high active mass paper-based energystorage devices containing free-standing additive-less polypyrrole-nanocellulose electrodes. J Mater Chem A 2(21):7711–7716

    Article  CAS  Google Scholar 

  • Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. part i. traditional factors. Tissue Eng 7(6):679–689

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Anders Mårtensson at Polymer Technology, Chalmers University of Technology for his help with the AFM analysis. The authors are grateful to Ann Wendel at Applied Chemisry, Chalmers University of Technology for her help with XPS analysis. J.T., G.W., P.G. and V.K. gratefully acknowledge the Knut and Alice Wallenberg Foundation for financial support through the Wallenberg Wood Science Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Thunberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 701 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thunberg, J., Kalogeropoulos, T., Kuzmenko, V. et al. In situ synthesis of conductive polypyrrole on electrospun cellulose nanofibers: scaffold for neural tissue engineering. Cellulose 22, 1459–1467 (2015). https://doi.org/10.1007/s10570-015-0591-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0591-5

Keywords

Navigation