Skip to main content
Log in

Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nanocellulose was successfully extracted from five different lignocellulosic biomass sources viz. banana rachis, sisal, kapok, pineapple leaf and coir using a combination of chemical treatments such as alkaline treatment, bleaching and acid hydrolysis. The shape, size and surface properties of the nanocellulose generally depend on the source and hydrolysis conditions. A comparative study of the fundamental properties of raw material, bleached and nanocellulose was carried out by means of Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, birefringence, X-ray diffraction, inverse gas chromatography and thermogravimetric analysis. Through the characterization of the nanocellulose obtained from different sources, the isolated nanocellulose showed an average diameter in the range of 10–25 nm, high crystallinity, high thermal stability and a great potential to be used with acid coupling agents due to a predominantly basic surface. This work provides an insight into the effective utilization of a variety of plant biomass as a potential source for nanocellulose extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdul Khalil HPS, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a rewiew. Carbohydr Polym 99:649–665

    Article  CAS  Google Scholar 

  • Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibers: a novel approach. Carbohydr Polym 86:1468–1475

    Article  CAS  Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107

    Article  CAS  Google Scholar 

  • Chen WS, Yu HP, Liu YX, Chen P, Zhang MX, Hai YF (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811

    Article  CAS  Google Scholar 

  • Chirayil CJ, Joy J, Mathew L, Mozetic M, Koetz J, Thomas S (2014) Isolation and characterization of cellulose nanofibrils from Helicteresisora plant. Ind Crop Prod 59:27–34

    Article  CAS  Google Scholar 

  • Cordeiro N, Gouveia C, Moraes AGO, Amico SC (2011) Natural fibers characterization by inverse gas chromatography. Carbohydr Polym 84:110–117

    Article  CAS  Google Scholar 

  • Cordeiro N, Mendonça C, Pothan LA, Varma A (2012) Monitoring surface properties evolution of thermochemically modified cellulose nanofibers from banana pseudo-stem. Carbohydr Polym 88:125–131

    Article  CAS  Google Scholar 

  • Das K, Ray D, Bandyopadhyay NR, Sahoo S, Mohanty AK, Misra M (2011) Physicomechanical properties of the jute micro/nanofibril reinforced starch/polyvinyl alcohol biocomposite films. Compos Part B 42:376–381

    Article  Google Scholar 

  • Deng H, Zhou X, Wang X, Zhang C, Ding B, Zhang Q, Du Y (2010) Layer-by layer structured polysaccharides film-coated cellulose nanofibrous mats for cell culture. Carbohydr Polym 80:475–480

    Article  Google Scholar 

  • Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315

    Article  CAS  Google Scholar 

  • Ferrer A, Filpponen I, Rodríguez A, Laine J, Rojas OJ (2012) Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255

    Article  CAS  Google Scholar 

  • Fortunati E, Puglia D, Monti M, Peponi L, Santulli C, Kenny JM, Torre L (2013) Extraction of cellulose nanocrystals from phormium tenax fibers. J Polym Environ 21:319–328

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93:172–177

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Hossain KMZ, Hasan MS, Boyd D, Rudd CD, Ahmed I, Thielemans W (2014) Effect of cellulose nanowhiskers on surface morphology, mechanical properties, and cell adhesion of melt-drawn polylactic acid fibers. Biomacromolecules 15:1498–1506

    Article  CAS  Google Scholar 

  • Isogai T, Saito T, Isogai A (2011) Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose 18:421–431

    Article  CAS  Google Scholar 

  • Jiang F, Hsieh Y-L (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40

    Article  CAS  Google Scholar 

  • Jiang F, Han S, Hsieh Y-L (2013) Controlled defibrillation of rice straw cellulose and self-assembly of cellulose nanofibrils into highly crystalline fibrous materials. RSC Adv 3:12366–12375

    Article  CAS  Google Scholar 

  • Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr Res 346:76–85

    Article  CAS  Google Scholar 

  • Kengkhetkit N, Amornsakchai T (2014) A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost effectiveness. Mater Des 55:292–299

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2:1–8

    Google Scholar 

  • Lin J, Tian F, Zhao N, Li X, Bian F, Wang J (2014) Cellulose nanofibrils aerogels generated from jute fibers. Carbohydr Polym 109:35–43

    Article  CAS  Google Scholar 

  • Maiti S, Jayaramudu J, Das K, Reddy SM, Sadiku R, Ray SS, Liu D (2013) Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohyd Polym 98:562–567

    Article  CAS  Google Scholar 

  • Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299

    Article  CAS  Google Scholar 

  • Mathew AP, Oksman K, Karim Z, Liu P, Khan SA, Naseri N (2014) Process scale up and characterization of wood cellulose nanocrystals hydrolysed using bioethanol pilot plant. Ind Crop Prod 58:212–219

    Article  CAS  Google Scholar 

  • Missoum K, Belgacem M, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Moran JI, Alvarez VA, Cyras VP, Vazquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high strength plant fiber based composites. Appl Phys A Mater 78:547–552

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  • Panthapulakkal S, Sain M (2012) Preparation and characterization of cellulose nanofibril films from wood fiber and their thermoplastic polycarbonate composites. Int J Polym Sci 2012:1–6

    Article  Google Scholar 

  • Sacui IA, Nieuwendaal RC, Burnett DJ, Stranick SJ, Jorfi M, Weder C, Foster EJ, Olsson RT, Gilman JW (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138

    Article  CAS  Google Scholar 

  • Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crop Prod 23:1–8

    Article  CAS  Google Scholar 

  • Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Silvério HA, Flauzino Neto WP, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crop Prod 44:427–436

    Article  Google Scholar 

  • Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modification of microfibrillated cellulose. Cellulose 15:35–45

    Article  CAS  Google Scholar 

  • Wang QQ, Zhu JY, Gleisner R, Kuster TA, Baxa U, McNeil SE (2012) Morphological development of cellulose fbrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19:1631–1643

    Article  CAS  Google Scholar 

  • Wicklein B, Salazar-Alvarez G (2013) Functional hybrids based on biogenic nanofibrils and inorganic nanomaterials. J Mater Chem A 1:5469–5478

    Article  CAS  Google Scholar 

  • Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

L.A. Pothan is grateful to the University Grants Commission (UGC), Government of India, for the Emeritus fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laly A. Pothan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepa, B., Abraham, E., Cordeiro, N. et al. Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22, 1075–1090 (2015). https://doi.org/10.1007/s10570-015-0554-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0554-x

Keywords

Navigation