Skip to main content
Log in

Negative influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Recently, many efforts have been made to efficiently impregnate different textile materials with metal and metal oxide nanoparticles in order to provide antimicrobial, UV protective or self-cleaning properties. Evidence of their environmental risks is limited at this point. The aim of this study was to explore the influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics. Biodegradation behavior of cotton fabrics impregnated with Ag and TiO2 NPs from colloidal solutions of different concentrations was assessed according to standard test method ASTM 5988-03 and soil burial test. Degradation of cotton fabrics was also evaluated by enzymatic hydrolysis with cellulase. The morphology of fibers affected by biodegradation was analyzed by scanning electron microscopy (SEM). In order to get better insight into biodegradation process, dehydrogenase activity of soil has been determined. Ag and particularly TiO2 nanoparticles suppressed the biodegradation of cotton fabrics. The dehydrogenase activity of soil with cotton fabrics impregnated with TiO2 nanoparticles was the weakest. Severe damage of cotton fibers during the biodegradation process was confirmed by SEM.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anjum NA, Gill SS, Duarte AC, Pereira E, Ahmad I (2013) Silver nanoparticles in soil–plant systems. J Nanopart Res 15:1896–1924

    Article  Google Scholar 

  • ASTM D 5988-03 (2003) Standard test method for determining aerobic biodegradation in soil of plastic materials or residual plastic materials after composting, USA

  • Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  CAS  Google Scholar 

  • Benoit R, Wilkinson KJ, Sauvé S (2013) Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles. Chem Cent J 7:75

    Article  Google Scholar 

  • Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409

    Article  CAS  Google Scholar 

  • Bozzi A, Yuranova T, Guasaquillo I, Laub D, Kiwi J (2005) Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation. J Photochem Photobiol A 174:156–164

    Article  CAS  Google Scholar 

  • Dalai S, Pakrashi S, Kumar RSS, Chandrasekaran N, Mukherjee A (2012) A comparative cytotoxicity study of TiO2 nanoparticles under light and dark conditions at low exposure concentrations. Toxicol Res 1:116–130

    Article  CAS  Google Scholar 

  • Daoud WA, Xin JH, Zhang YH (2005) Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surf Sci 599:69–75

    Article  CAS  Google Scholar 

  • Durán N, Marcato P, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Article  Google Scholar 

  • Edvards-Jones V (2009) The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol 49:147–152

    Article  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  CAS  Google Scholar 

  • Fedorak PM (2005) Microbial processes in the degradation of fibers. In: Blackburn RS (ed) Biodegradable and sustainable fibers. Woodhead Publishing in Textiles, Cambridge, pp 1–2

    Chapter  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanism study of antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  Google Scholar 

  • Ge Y, Priester JH, Van De Werhorst LC, Schimel JP, Holden PA (2013) Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacteria communities. Environ Sci Technol 47:14411–14417

    Article  CAS  Google Scholar 

  • Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43:8113–8118

    Article  CAS  Google Scholar 

  • Gitipour A, Badawy AE, Arambewela M, Miller B, Scheckel K, Elk M, Ryu H, Gomez-Alvarez V, Domingo JS, Thiel S, Tolaymat T (2013) The impact of silver nanoparticles on the composting of municipal solid waste. Environ Sci Technol 47:14385–14393

    Article  CAS  Google Scholar 

  • Gorenšek M, Recelj P (2007) Nanosilver functionalized cotton fabric. Text Res J 77:138–141

    Article  Google Scholar 

  • Gorenšek M, Gorjanc M, Bukošek V, Kovač J, Jovančić P, Mihailović D (2010) Functionalization of PET fabrics by corona and nano silver. Text Res J 80:253–262

    Article  Google Scholar 

  • Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Gowri S, Almeida L, Amorim T, Carneiro N, Souto AP, Esteves MF (2010) Polymer nanocomposites for multifunctional finishing of textiles-review. Text Res J 80:1290–1306

    Article  CAS  Google Scholar 

  • Hebeish A, El-Shafei A, Sharaf S, Zaghloul S (2011) Novel precursors for green synthsis and application of silver nanoparticles in the realm of cotton finishing. Carbohydr Polym 84:605–613

    Article  CAS  Google Scholar 

  • Ilić V, Šaponjić Z, Vodnik V, Molina R, Dimitrijević S, Jovančić P, Nedeljković J, Radetić M (2009a) Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. J Mater Sci 44:3983–3990

    Article  Google Scholar 

  • Ilić V, Šaponjić Z, Vodnik V, Potkonjak B, Jovančić P, Nedeljković J, Radetić M (2009b) The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles. Carbohydr Polym 78:564–569

    Article  Google Scholar 

  • Ilić V, Šaponjić Z, Vodnik V, Lazović S, Dimitrijević S, Jovančić P, Nedeljković JM, Radetić M (2010) Bactericidal efficiency of silver nanoparticles deposited onto radio frequency plasma pretreated polyester fabrics. Ind Eng Chem Res 49:7287–7293

    Article  Google Scholar 

  • ISO 23753-1 (2005) Determination of dehydrogenase activity in soil—method using triphenyltetrazolium chloride (TTC)

  • Kelly FM, Johnston JH (2011) Colored and functional silver nanoparticle-wool fiber composites. ACS Appl Mater Interfaces 3:1083–1092

    Article  CAS  Google Scholar 

  • Klemenčič D, Simončič B, Tomšič B, Orel B (2010) Biodegradation of silver functionalized cellulose fibres. Carbohydr Polym 80:426–435

    Article  Google Scholar 

  • Lee HJ, Jeong SH (2005) Bacteriostasis and skin innoxiousness of nanosize silver colloids on textiles fabrics. Text Res J 75:551–556

    Article  CAS  Google Scholar 

  • Lee HJ, Yeo SY, Jeong SH (2003) Antibacterial effect of nanosized silver colloidal solution on textiles fabrics. J Mater Sci 38:2199–2204

    Article  CAS  Google Scholar 

  • Li L, Frey M, Browning KJ (2010) Biodegradability study on cotton and polyester fabrics. J Eng Fiber Fabr 5:42–53

    CAS  Google Scholar 

  • Lorenz C, Windler L, von Goetz N, Lehmann RP, Schuppler M, Hungerbühler K, Heuberger M, Nowack B (2012) Characterization of Silver release from commercially available functional (nano) textiles. Chemosphere 89:817–824

    Article  CAS  Google Scholar 

  • Madejόn E, Burgos P, Lόpez R, Cabrera F (2001) Soil enzymatic response to addition of heavy metals with organic residues. Biol Fertil Soils 34:144–150

    Article  Google Scholar 

  • Meilert KT, Laub D, Kiwi J (2005) Photocatalytic self-cleaning of modified cotton textiles by TiO2 cluster attached by chemical spacers. J Mol Catal A 237:101–108

    Article  CAS  Google Scholar 

  • Mejía MI, Marín JM, Restrepo G, Pulgarín C, Mielczarski E, Mielczarski J, Arroyo Y, Lavanchy JC, Kiwi J (2009) Self-cleaning modified TiO2 cotton pre-treated by UVC-light (185 nm) and RF-plasma in vacuum and also under atmospheric pressure. Appl Catal B 91:481–488

    Article  Google Scholar 

  • Mihailović D, Šaponjić Z, Radoičić M, Radetić T, Jovančić P, Nedeljković J, Radetić M (2010a) Functionalization of polyester fabrics with alginates and TiO2 nanoparticles. Carbohydr Polym 79:526–532

    Article  Google Scholar 

  • Mihailović D, Šaponjić Z, Molina R, Puač N, Jovančić P, Nedeljković J, Radetić M (2010b) Improved properties of oxygen and argon RF Plasma activated polyester fabrics loaded with TiO2 nanoparticles. ACS Appl Mater Interfaces 2:1700–1706

    Article  Google Scholar 

  • Mihailović D, Šaponjić Z, Molina R, Radoičić M, Esquena J, Jovančić P, Nedeljković J, Radetić M (2011a) Multifunctional properties of polyester fabrics modified by corona discharge/air RF plasma and colloidal TiO2 nanoparticles. Polym Compos 32:390–397

    Article  Google Scholar 

  • Mihailović D, Šaponjić Z, Radoičić M, Lazović S, Baily CJ, Jovančić P, Nedeljković J, Radetić M (2011b) Functionalization of cotton fabrics with corona/air RF plasma and colloidal TiO2 nanoparticles. Cellulose 18:811–825

    Article  Google Scholar 

  • Mihailović D, Šaponjić Z, Vodnik V, Potkonjak B, Jovančić P, Nedeljković J, Radetić M (2011c) Multifunctional PES fabrics modified with colloidal Ag and TiO2 nanoparticles. Polym Adv Technol 22:2244–2249

    Article  Google Scholar 

  • Miller GL (1959) Use of dinitrosalycilic acid for determining reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Murata T, Kanao-Koshikawa M, Takamatsu T (2005) Effects of Pb, Cu, Sb, In and Ag contamination on the proliferation of soil bacterial colonies, soil dehydrogenase activity, and phospholipids fatty acid profiles of soil microbial communities. Water Air Soil Pollut 164:103–118

    Article  CAS  Google Scholar 

  • Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C 13:169–189

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  Google Scholar 

  • Park CH, Kang YK, Im SS (2004) Biodegradability of cellulose fabrics. J Appl Polym Sci 94:248–253

    Article  CAS  Google Scholar 

  • Payrot C, Wilkinson KJ, Desrosiers M, Sauvé S (2014) Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environ Toxicol Chem 33:115–125

    Article  Google Scholar 

  • Priester JH, Ge Y, Chang V, Stoimenov PK, Schimel JP, Stucky GD, Holden PA (2013) Assessing interactions of hydrophilic nanoscale TiO2 with soil water. J Nanopart Res 15:1899–1912

    Article  Google Scholar 

  • Qi K, Xin JH, Daoud WA, Mak CL (2007) Functionalizing polyester fiber with a self-cleaning property using anatase TiO2 and low-temperature plasma treatment. Int J Appl Ceram Technol 4:554–563

    Article  CAS  Google Scholar 

  • Radetić M (2013a) Functionalization of textile materials with silver nanoparticles. J Mater Sci 48:95–107

    Article  Google Scholar 

  • Radetić M (2013b) Functionalization of textile materials with TiO2 nanoparticles. J Photochem Photobiol C 16:62–76

    Article  Google Scholar 

  • Radetić M, Ilić V, Vodnik V, Dimitrijević S, Jovančić P, Šaponnjić Z, Nedeljković J (2008) Antibacterial effect of silver nanoparticles deposited on corona-treated polyester and polyamide fabrics. Polym Adv Technol 19:1816–1821

    Article  Google Scholar 

  • Rajh T, Nedeljković J, Chen LX, Tiede DM, Thurnauer MC (1998) Photoreduction of copper on TiO2 nanoparticles modified with polydentate ligands. J Adv Oxid Technol 3:292–298

    CAS  Google Scholar 

  • Šaponjić ZV, Csencsits R, Rajh T, Dimitrijević N (2003) Self-assembly of topo-derivatized silver nanoparticles into multilayered film. Chem Mater 15:4521–4526

    Article  Google Scholar 

  • Shah V, Jones J, Dickman J, Greenman S (2014) Response of soil bacterial community to metal nanoparticles in biosolids. J Hazard Mater 274:399–403

    Article  CAS  Google Scholar 

  • Shin YJ, Kwak JI, An YJ (2012) Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 88:524–529

    Article  CAS  Google Scholar 

  • Szostak-Kotowa J (2004) Biodeterioration of textiles. Int Biodeterior Biodegrad 53:165–170

    Article  CAS  Google Scholar 

  • Tejada M, Benitez C (2011) Organic amendment based on vermicompost and compost: differences on soil properties and maize yield. Waste Manag Res 29:1185–1196

    Article  CAS  Google Scholar 

  • Tomšič B, Simončič B, Orel B, Vilčnik A, Spreiyer H (2007) Biodegradability of cellulose fabric modified with imidazolidinone. Carbohydr Polym 69:478–488

    Article  Google Scholar 

  • Tomšič B, Klemenčić D, Simončič B, Orel B (2011) Influence of antimicrobial finishes on the biodeterioration of cotton and cotton/polyester fabrics: leaching versus bio-barrier formation. Polym Degrad Stabil 96:1286–1296

    Article  Google Scholar 

  • Tung WS, Daoud WA (2009) Photocatalytic self-cleaning keratines: a feasibility study. Acta Biomater 5:50–56

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2007) Functional finishing of cotton fabrics using silver nanoparticles. J Nanosci Nanotechnol 7:1893–1897

    Article  CAS  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250

    Article  CAS  Google Scholar 

  • Windler L, Lorenz C, von Goetz N, Hungerbuhler K, Amberg M, Heuberger M, Nowack B (2012) Release of titanium dioxide from textile during washing. Environ Sci Technol 46:8181–8188

    Article  CAS  Google Scholar 

  • Yuranova T, Rincon AG, Bozzi A, Parra S, Pulgarin C, Albers P, Kiwi J (2003) Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver. J Photochem Photobiol A 161:27–34

    Article  CAS  Google Scholar 

  • Zhang N, He X, Gao Y, Wang H, Ma D, Zhang R, Yang S (2010) Pedogenic carbonate and soil dehydrogenase activity in response to soil organic matter in Artemisia ordosica community. Pedosphere 20:229–235

    Article  CAS  Google Scholar 

  • Zhukova LV, Kiwi J, Nikandrov VV (2012) TiO2 nanoparticles suppress Escherichia coli cell division in the absence of UV irradiation in acidic conditions. Colloid Surf B 97:240–247

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support for this study was provided by the Ministry of Education, Science and Technological Development of Republic of Serbia (Projects No. 45020 and 172056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Radetić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazić, V., Radoičić, M., Šaponjić, Z. et al. Negative influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics. Cellulose 22, 1365–1378 (2015). https://doi.org/10.1007/s10570-015-0549-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0549-7

Keywords

Navigation