Skip to main content
Log in

The mechanism of cellulose solubilization by urea studied by molecular simulation

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We used molecular dynamics simulation to model the effect of urea and thiourea on the solvent quality of aqueous solutions with respect to cellulose. A model system consisting of a periodically replicated cellulose molecule of effectively infinite degree of polymerization immersed in aqueous (thio-)urea solution was considered. Kirkwood-Buff theory, which relates the pair distribution functions to the concentration derivatives of the chemical potential, allowed the solubilization effect to be quantified in terms of the preferential binding of urea over water to the cellulose molecule. We found that urea is preferentially adsorbed on the hydrophobic faces of the anhydroglucose rings but has the same affinity as water to the hydroxyl groups. Thus, the simulations suggest that urea acts primarily by mitigating the effect of the hydrophobic portions of the cellulose molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abascal JLF, Vega C (2005) A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys 123(234):505

    Google Scholar 

  • Almlöf J, Taylor PR (1991) Atomic natural orbital (ano) basis sets for quantum chemical calculations. Adv Quantum Chem 22:301–373

    Article  Google Scholar 

  • Barone G (1990) Physical chemistry of aqueous solutions of oligosaccharides. Thermochim Acta 162:17–30

    Article  CAS  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  • Bergenstråhle-Wohlert M, Berglund LA, Brady JW, Larsson PT, Westlund P, Wohlert J (2012) Concentration enrichment of urea at cellulose surfaces: results from molecular dynamics simulations and NMR spectroscopy. Cellulose 19:1–12

    Article  Google Scholar 

  • Bolen DW, Rose GD (2008) Structure and energetics of the hydrogen-bonded backbone in protein folding. Annu Rev Biochem 77:339–362

    Article  CAS  Google Scholar 

  • Bruning W, Holzer A (1961) The effect of urea on hydrophobic bonds: the criticall micelle concentration of n-dodecyltrimethylammonium bromide in aqueous solutions of urea. J Am Chem Soc 83:4865–4866

    Article  CAS  Google Scholar 

  • Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(014):101

    Google Scholar 

  • Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548

    Article  CAS  Google Scholar 

  • Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Chang C, Cheng G, Chen X, Chu B (2007) Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature. ChemPhysChem 8:1572–1579

    Article  CAS  Google Scholar 

  • Cai L, Liu Y, Liang H (2012) Impact of hydrogen bonding on inclusion layer of urea to cellulose: study of molecular dynamics simulation. Polymer 53:1124–1130

    Article  CAS  Google Scholar 

  • Canchi DR, García AE (2013) Cosolvent effects on protein stability. Annu Rev Phys Chem 64:273–293

    Article  CAS  Google Scholar 

  • Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437:640–647

    Article  CAS  Google Scholar 

  • Egal M, Budtova T, Navard P (2007) The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose 15:361–370

    Article  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8592

    Article  CAS  Google Scholar 

  • Frank HS, Franks F (1968) Structural approach to the solvent power of water for hydrocarbons; urea as a structure breaker. J Chem Phys 48:4746–4757

    Article  CAS  Google Scholar 

  • Gamsjäger H, Lorimer JW, Salomon M, Shaw DG, Tomkins RPT (2010) The IUPAC-NIST solubility data series: a guide to preparation and use of compilations and evaluations (IUPAC technical report). Pure Appl Chem 82:1137–1159

    Article  Google Scholar 

  • Glasser WG, Atalla RH, Blackwell J, Brown RM Jr, Burchard W, French AD, Klemm DO, Nishiyama Y (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19:589–598

    Article  CAS  Google Scholar 

  • Guinn EJ, Pegram LM, Capp MW, Pollock MN, Record MT Jr (2011) Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer. Proc Natl Acad Sci USA 108:16932–16937

    Article  CAS  Google Scholar 

  • Heinze T, Koschella A (2005) Solvents applied in the field of cellulose chemistry: a mini review. Polímeros 15:84–90

    CAS  Google Scholar 

  • Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  • Horinek D, Netz RR (2011) Can simulations quantitatively predict peptide transfer free energies to urea solutions? Thermodynamic concepts and force field limitations. J Phys Chem A 115:6125–6136

    Article  CAS  Google Scholar 

  • Hua L, Zhou R, Thirumalai D, Berne BJ (2008) Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. Proc Natl Acad Sci USA 105:16,928–16,933

    Article  CAS  Google Scholar 

  • Isobe N, Noguchi K, Nishiyama Y, Kimura S, Wada M, Kuga S (2013) Role of urea in alkaline dissolution of cellulose. Cellulose 20:97–103

    Article  CAS  Google Scholar 

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319

    Article  CAS  Google Scholar 

  • Jones MN (1973) Interfacial tension studies at the aqueous urea-n-decane and aqueous urea + surfactant-n-decane interfaces. J Colloid Interface Sci 44:13–20

    Article  CAS  Google Scholar 

  • Karlström G, Lindh R, Malmqvist PÅ, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P (2003) Molcas: a program package for computational chemistry. Comput Mater Sci 28(2):222–239

    Article  Google Scholar 

  • Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63

    Article  CAS  Google Scholar 

  • Kirkwood JG, Buff FP (1951) The statistical mechanical theory of solutions. I. J Chem Phys 19:774–777

    Article  CAS  Google Scholar 

  • Kirschner KN, Yongye AB, Tschampel SM, Gonzalez-Outierino J, Daniels CR, Foley BL, Woods RJ (2008) Glycam06: a generalizable biomolecular force field. carbohydrates. J Comp Chem 29:622–655

    Article  CAS  Google Scholar 

  • Kuharski RA, Rossky PJ (1984) Solvation of hydrophobic species in aqueous urea solution: a molecular dynamics study. J Am Chem Soc 106:5794–5800

    Article  CAS  Google Scholar 

  • Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81

    Article  CAS  Google Scholar 

  • Lue A, Zhang L, Ruan D (2007) Inclusion complex formation of cellulose in NaOH/thiourea aqueous system at low temperature. Macromol Chem Phys 208:2359–2366

    Article  CAS  Google Scholar 

  • Lue A, Liu Y, Zhang L, Potthas A (2011a) Investigation on metastable solution of cellulose dissolved in NaOH/urea aqueous system at low temperature. J Phys Chem B 115:12801–12808

    Article  Google Scholar 

  • Lue A, Liu Y, Zhang L, Potthas A (2011b) Light scattering study on the dynamic behaviour of cellulose inclusion complex in LiOH/urea aqueous solution. Polymer 52:3857–3864

    Article  CAS  Google Scholar 

  • Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid In 19:32–40

    Article  CAS  Google Scholar 

  • Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587

    Article  CAS  Google Scholar 

  • Nozaki Y, Tanford C (1963) The solubility of amino acids and related compounds in aqueous urea solutions. J Biol Chem 238:4074–4081

    CAS  Google Scholar 

  • Pegram LM, Record MT Jr (2009) Using surface tension data to predict differences in surface and bulk concentrations of nonelectrolytes in water. J Phys Chem C 113:2171–2174

    Article  CAS  Google Scholar 

  • Pharr DY, Fu ZS, Smith TK, Hinze WL (1989) Solubilization of cyclodextrins for analytical applications. Anal Chem 61:275–279

    Article  CAS  Google Scholar 

  • Pierce V, Kang M, Aburi M, Weerasinghe S, Smith PE (2008) Recent applications of Kirkwood-Buff theory to biological systems. Cell Biochem Biophys 50:1–22

    Article  CAS  Google Scholar 

  • Puzzarini C (2012) Molecular structure of thiourea. J Phy Chem A 116(17):4381–4387

    Article  CAS  Google Scholar 

  • Qin X, Lu A, Cai J, Zhang L (2013) Stability of inclusion complex formed by cellulose in NaOH/urea aqueous solution at low temperature. Carbohydr Polym 92:1315–1320

    Article  CAS  Google Scholar 

  • Ramsden W (1902) Some new properties of urea. J Physiol 28:xxiii–xxvi

    CAS  Google Scholar 

  • Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose/NaOH solutions. Biomacromolecules 4:259–264

    Article  CAS  Google Scholar 

  • Ruan D, Lue A, Zhang L (2008) Gelation behaviors of cellulose solution dissolved in aqueous NaOH/thiourea at low temperature. Polymer 49:1027–1036

    Article  CAS  Google Scholar 

  • Shimizu S, Matubayashi N (2014) Preferential solvation: dividing surface vs excess numbers. J Phys Chem B 118:3922–3930

    Article  CAS  Google Scholar 

  • Smith PE, Mazo RM (2008) On the theory of solute solubility in mixed solvents. J Phys Chem B 112:7875–7884

    Article  CAS  Google Scholar 

  • Song J, Ge H, Xu M, Chen Q, Zhang L (2014) Study on the interaction between urea and cellulose by combining solid-state 13C CP/MAS NMR and extended Hückel charges. Cellulose 21:4019–4027

  • Spiro K (1900) Ueber die Beeinflussung der Eiweisscoagulation durch stickstoffhaltige Substanzen. Z Physiol Chem 30:182–199

    Article  CAS  Google Scholar 

  • Weerashinghe S, Smith PE (2003) A Kirkwood-Buff derived force field for mixtures of urea and water. J Phys Chem B 107:3891–3898

    Article  Google Scholar 

  • Weng L, Zhang L, Ruan D, Shi L, Xu J (2004) Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmuir 20:2086–2093

    Article  CAS  Google Scholar 

  • Wetlaufer DB, Malik SK, Stoller L, Coffin RL (1964) Nonpolar group participation in the denaturation of proteins by urea and guanidinium salts. Model compound studies. J Am Chem Soc 86:508–514

    Article  CAS  Google Scholar 

  • Xiong B, Zhao P, Hu K, Zhang L, Cheng G (2014) Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose 21:1183–1192

    Article  CAS  Google Scholar 

  • Zangi R, Zhou R, Berne BJ (2009) Ureas action on hydrophobic interactions. J Am Chem Soc 131:1535–1541

    Article  CAS  Google Scholar 

  • Zhang S, Li F, Yu J, Hsieh YL (2010) Dissolution behaviour and solubility of cellulose in NaOH complex solution. Carbohydr Polym 81:668–674

    Article  CAS  Google Scholar 

  • Zhao X, Chen Y, Jiang X, Shang Y, Zhang L, Gong Q, Zhang H, Wang Z, Zhou X (2013) The thermodynamics study on the dissolution mechanism of cellobiose in NaOH/urea aqueous solution. J Therm Anal Calorim 111:891–896

    Article  CAS  Google Scholar 

Download references

Acknowledgments

For financial support the authors thanks Södra’s Research Foundation; the Swedish Research Council; the Swedish Foundation for Strategic Research. For computational resources, LUNARC in Lund is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Wernersson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wernersson, E., Stenqvist, B. & Lund, M. The mechanism of cellulose solubilization by urea studied by molecular simulation. Cellulose 22, 991–1001 (2015). https://doi.org/10.1007/s10570-015-0548-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0548-8

Keywords

Navigation