Skip to main content
Log in

Moisture and solvent responsive cellulose/SiO2 nanocomposite materials

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Water responsive SiO2/cellulose nanocomposite hydrogels and films were constructed, for the first time, by dispersing SiO2 nanoparticles into cellulose solution in LiOH/urea solvent, and then by crosslinking with epichlorohydrin or regeneration in coagulation bath, respectively. The cellulose nanocomposite materials were characterized by Field emission scanning electron microscopy, FTIR, dynamic rheology, wide angle X-ray diffraction and mechanical test. The SiO2/cellulose nanocomposites at wet state or in water displayed unique behaviors, showing higher light transmittance than those before contacting with water. The results revealed that strong hydrogen-bonding interaction among water, cellulose and SiO2 led the good dispersion of SiO2 nanoparticles in the cellulose matrix. The incorporation of SiO2 nanoparticles improved the transmittance and mechanical strength of the cellulose hydrogels, and also enhanced the mechanical strength of the films. Especially, the cellulose/SiO2 nanocomposite films were milky at dry state, and changed to transparent after being soaked in water, different from the cellulose film without the SiO2 nanoparticles. In our findings, SiO2 and cellulose with water could form strong hydrogen bonding to create a homogenous network structure. The cellulose/SiO2 composite as a smart material exhibited moisture and solvent responsiveness, showing potential applications in moisture detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Apetz R, Bruggen MP (2003) Transparent alumina: a light-scattering model. J Am Ceram Soc 86(3):480–486

    Article  CAS  Google Scholar 

  • Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314(5802):1107–1110

    Article  CAS  Google Scholar 

  • Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci B Polym Phys 44(21):3093–3101

    Article  CAS  Google Scholar 

  • Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide–urea solution. ChemSusChem 1(1–2):149–154

    Article  CAS  Google Scholar 

  • Chen M, Wu L, Zhou S, You B (2004) Synthesis of raspberry-like PMMA/SiO2 nanocomposite particles via a surfactant-free method. Macromolecules 37(25):9613–9619

    Article  CAS  Google Scholar 

  • Chen D, Huang F, Cheng YB, Caruso RA (2009) Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells. Adv Mater 21(21):2206–2210

    Article  CAS  Google Scholar 

  • de las Heras Alarcón C, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34(3):276–285

    Article  Google Scholar 

  • Feng J, Peng L, Wu C, Sun X, Hu S, Lin C, Dai J, Yang J, Xie Y (2012) Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv Mater 24(15):1969–1974

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Fujii S, Read ES, Binks BP, Armes SP (2005) Stimulus-responsive Emulsifiers Based on nanocomposite microgel particles. Adv Mater 17(8):1014–1018

    Article  CAS  Google Scholar 

  • Garnweitner G, Smarsly B, Assink R, Ruland W, Bond E, Brinker CJ (2003) Self-assembly of an environmentally responsive polymer/silica nanocomposite. J Am Chem Soc 125(19):5626–5627

    Article  CAS  Google Scholar 

  • Han J, Dou Y, Yan D, Ma J, Wei M, Evans DG, Duan X (2011) Biomimetic design and assembly of organic–inorganic composite films with simultaneously enhanced strength and toughness. Chem Commun 47(18):5274–5276

    Article  CAS  Google Scholar 

  • Hu J, Liu S (2010) Responsive polymers for detection and sensing applications: current status and future developments. Macromolecules 43(20):8315–8330

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    Article  CAS  Google Scholar 

  • Koo J, Hong K, Park J, Shin D (2004) Effect of grain size on transmittance and mechanical strength of sintered alumina. Mater Sci Eng A 374(1):191–195

    Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416

    Article  CAS  Google Scholar 

  • Li L, Aoki Y (1997) Rheological images of poly (vinyl chloride) gels. 1. the dependence of sol–gel transition on concentation. Macromolecules 30(25):7835–7841

    Article  CAS  Google Scholar 

  • Liu S, Zhang L (2009) Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose 16(2):189–198

    Article  CAS  Google Scholar 

  • Ma M, Guo L, Anderson DG, Langer R (2013) Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339(6116):186–189

    Article  CAS  Google Scholar 

  • Nan C-W, Fan L, Lin Y, Cai Q (2003) Enhanced Ionic Conductivity of Polymer Electrolytes Containing Nanocomposite S i O 2 Particles. Phys Rev Lett 91(26):266104

    Article  Google Scholar 

  • Ogihara H, Xie J, Okagaki J, Saji T (2012) Simple method for preparing superhydrophobic paper: spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency. Langmuir 28(10):4605–4608

    Article  CAS  Google Scholar 

  • Pei Y, Wang X, Huang W, Liu P, Zhang L (2013) Cellulose-based hydrogels with excellent microstructural replication ability and cytocompatibility for microfluidic devices. Cellulose 20(4):1897–1909

    Article  CAS  Google Scholar 

  • Sidorenko A, Krupenkin T, Taylor A, Fratzl P, Aizenberg J (2007) Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 315(5811):487–490

    Article  CAS  Google Scholar 

  • Song H, Zheng L (2013) Nanocomposite films based on cellulose reinforced with nano-SiO2: microstructure, hydrophilicity, thermal stability, and mechanical properties. Cellulose 20(4):1737–1746

    Article  CAS  Google Scholar 

  • Stuart MAC, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9(2):101–113

    Article  Google Scholar 

  • Wang Z, Han E, Ke W (2006) Effect of acrylic polymer and nanocomposite with nano-SiO2 on thermal degradation and fire resistance of APP–DPER–MEL coating. Polym Degrad Stab 91(9):1937–1947

    Article  CAS  Google Scholar 

  • Wang Q, Cai J, Zhang L, Xu M, Cheng H, Han CC, Kuga S, Xiao J, Xiao R (2013) A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J Mater Chem A 1(22):6678–6686

    Article  CAS  Google Scholar 

  • Wu J, Sailor MJ (2009) Chitosan hydrogel-capped porous SiO2 as a pH responsive nano-valve for triggered release of insulin. Adv Funct Mater 19(5):733–741

    Article  CAS  Google Scholar 

  • Yang X, Liu Q, Chen X, Yu F, Zhu Z (2008) Investigation of PVA/ws-chitosan hydrogels prepared by combined γ-irradiation and freeze-thawing. Carbohydr Polym 73(3):401–408

    Article  CAS  Google Scholar 

  • Yang J, Han C-R, Duan J-F, Xu F, Sun R-C (2013) Interaction of silica nanoparticle/polymer nanocomposite cluster network structure: revisiting the reinforcement mechanism. J Phys Chem C 117(16):8223–8230

    Article  CAS  Google Scholar 

  • Yuvaraj H, Shim JJ, Lim KT (2010) Organic–inorganic polypyrrole-surface modified SiO2 hybrid nanocomposites: a facile and green synthetic approach. Polym Adv Technol 21(6):424–429

    CAS  Google Scholar 

  • Zarzar LD, Aizenberg J (2013) Stimuli-responsive chemomechanical actuation: a hybrid materials approach. Acc Chem Res 47:530–539

    Article  Google Scholar 

  • Zeng J, Liu S, Cai J, Zhang L (2010) TiO2 immobilized in cellulose matrix for photocatalytic degradation of phenol under weak UV light irradiation. J Phys Chem C 114(17):7806–7811

    Article  CAS  Google Scholar 

  • Zhang Y, Yu J, Zhou C, Chen L, Hu Z (2010) Preparation, morphology, and adhesive and mechanical properties of ultrahigh-molecular-weight polyethylene/SiO2 nanocomposite fibers. Polym Compos 31(4):684–690

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (973 Program, 2010CB732203), the Major Program of National Natural Science Foundation of China (21334005) and the National Natural Science Foundation of China (20874079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Duan, B., Xu, D. et al. Moisture and solvent responsive cellulose/SiO2 nanocomposite materials. Cellulose 22, 553–563 (2015). https://doi.org/10.1007/s10570-014-0527-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0527-5

Keywords

Navigation