Skip to main content
Log in

Modification of cellulose nanocrystal-reinforced composite hydrogels: effects of co-crosslinked and drying treatment

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The synthesis platform of composite hydrogels containing rigid reinforcing filler cellulose nanocrystals (CNCs) and polymer matrix polyacrylamide (PAM) has been proposed (Yang et al. in Cellulose 20:227–237, 2013). The features of CNCs as multifunctional crosslinkers and flexible polymer chain entanglements contributed to the unique arrangement of CNC/PAM clusters with reversible network structures. In this article, the chemical crosslinking agent N,N′-methylene-bisacrylamide (BIS) was added to obtain the dual crosslinked networks, and the mechanical properties of the resulting co-crosslinked hydrogels were examined by tailoring the CNC and BIS concentrations. The results indicated that the homogeneous dispersion of CNCs throughout the polymer matrix was disturbed in the presence of BIS, and the covalent crosslinkers led to weakness and brittleness of the hydrogels. Some new entanglements within the networks were formed after a simple drying treatment, which was verified by the greater tensile strength compared with the as-prepared ones. The mechanism for the formation of these new entanglements was ascribed to the irreversible rearrangement of the CNC/PAM network structure, whereas for co-crosslinked hydrogels no strength increment was observed after the drying treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Appel EA, Barrio J, Loh XJ, Scherman OA (2012) Supramolecular polymeric hydrogels. Chem Soc Rev 41:6195–6214

    Article  CAS  Google Scholar 

  • Favier V, Chanzy H, Cavaillé JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    Article  CAS  Google Scholar 

  • Flory PJ (1944) Network structure and the elastic properties of vulcanized rubber. Chem Rev 35:51–75

    Article  CAS  Google Scholar 

  • Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158

    Article  CAS  Google Scholar 

  • Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124

    Article  CAS  Google Scholar 

  • Henderson KJ, Zhou TC, Otim KJ, Shull KR (2010) Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules 43:6193–6201

    Article  CAS  Google Scholar 

  • Heymans N (2000) A novel look at models for polymer entanglement. Macromolecules 33:4226–4234

    Article  CAS  Google Scholar 

  • Hintermeyer J, Herrmann A, Kahlau R, Goiceanu C, Rössler EA (2008) Molecular weight dependence of glassy dynamics in linear polymers revisited. Macromolecules 41:9335–9344

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466

    Article  CAS  Google Scholar 

  • Larsson M, Stading M, Larsson A (2010) High performance polysodium acrylate superabsorbents utilizing microfibrillated cellulose to augment gel properties. Soft Mater 8:207–225

    Article  CAS  Google Scholar 

  • Lin Y, Shangguan Y, Zuo M, Jones EH, Zheng Q (2012) Effects of molecular entanglement on molecular dynamics and phase-separation kinetics of poly(methyl methacrylate)/poly(styrene-co-maleic anhydride) blends. Polymer 53:1418–1427

    Article  CAS  Google Scholar 

  • Litvinov VM, Steeman PAM (1999) EPDM-carbon black interactions and the reinforcement mechanisms as studied by low-resolution 1H NMR. Macromolecules 32:8476–8490

    Article  CAS  Google Scholar 

  • Martin JE, Adolf D (1991) The sol-gel transition in chemical gels. Annu Rev Phys Chem 42:311–339

    Article  CAS  Google Scholar 

  • Mi Y, Xue G, Lu X (2003) A new perspective of the glass transition of polymer single-chain nanoglobules. Macromolecules 36:7560–7566

    Article  CAS  Google Scholar 

  • Miao C, Hamad W (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Pan P, Zhu B, Inoue Y (2007) Enthalpy relaxation and embrittlement of poly(l-lactide) during physical aging. Macromolecules 40:9664–9671

    Article  CAS  Google Scholar 

  • Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, Oxford

    Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Skelton S, Bostwick M, O’Connor K, Konst S, Casey S, Lee BP (2013) Biomimetic adhesive containing nanocomposite hydrogel with enhanced materials properties. Soft Matter 9:3825–3833

    Article  CAS  Google Scholar 

  • Stone DA, Korley LTJ (2010) Bioinspired polymeric nanocomposites. Macromolecules 43:9217–9226

    Article  CAS  Google Scholar 

  • Tanaka Y, Kagami Y, Matsuda A, Osada Y (1995) Thermoreversible transition of tensile modulus of hydrogel with ordered aggregates. Macromolecules 28:2574–2576

    Article  CAS  Google Scholar 

  • Trovatti E, Carvalho AJF, Ribeiro SJL, Gandini A (2013) Simple green approach to reinforce natural rubber with bacterial cellulose nanofibers. Biomacromolecules 14:2667–2674

    Article  CAS  Google Scholar 

  • Vermonden T, Censi R, Hennink Wim E (2012) Hydrogels for protein delivery. Chem Rev 112:2853–2888

    Article  CAS  Google Scholar 

  • Watanabe H (1999) Viscoelasticity and dynamics of entangled polymers. Prog Polym Sci 24:1253–1403

    Article  CAS  Google Scholar 

  • Way AE, Hsu L, Shanmuganathan K, Weder C, Rowan SJ (2012) pH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett 1:1001–1006

    Article  CAS  Google Scholar 

  • Wu CJ, Gaharwar AK, Chan BK, Schmidt G (2011) Mechanically tough pluronic F127/laponite nanocomposite hydrogels from covalently and physically cross-linked networks. Macromolecules 44:8215–8224

    Article  CAS  Google Scholar 

  • Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC (2013) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals–polyacrylamide nanocomposite hydrogels. Cellulose 20:227–237

    Article  CAS  Google Scholar 

  • Yang J, Zhao JJ, Han CR, Duan JF, Xu F, Sun RC (2014) Tough nanocomposite hydrogels from cellulose nanocrystals/poly(acrylamide) clusters: influence of the charge density, aspect ratio and surface coating with PEG. Cellulose 21:541–551

    Article  CAS  Google Scholar 

  • Yu G, Yan X, Han C, Huang F (2013) Characterization of supramolecular gels. Chem Soc Rev 42:6697–6722

    Article  CAS  Google Scholar 

  • Zhao XH (2014) Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10:672–687

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Fundamental Research Funds for the Central Universities (TD2011-10), Research Fund for the Doctoral Program of Higher Education of China (20120014120006), and Program for New Century Excellent Talents in University (NCET-12-0782).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1696 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhao, JJ. & Zhang, XM. Modification of cellulose nanocrystal-reinforced composite hydrogels: effects of co-crosslinked and drying treatment. Cellulose 21, 3487–3496 (2014). https://doi.org/10.1007/s10570-014-0364-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0364-6

Keywords

Navigation