Skip to main content
Log in

Optimization of microfluidization for the homogeneous distribution of cellulose nanocrystals (CNCs) in biopolymeric matrix

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Microfluidization, which is a high-pressure homogenization technique, was used to develop highly dispersed cellulose nanocrystal (CNC) reinforced chitosan based nanocomposite films. A three factor central composite design with five levels was designed to systematically optimize the microfluidization process. The three factors were the CNC content, the microfluidization pressure and the number of microfluidization cycles. Response surface methodology was used to obtain relationship between the mechanical properties of the nanocomposite films and the factors. Polynomial equations were generated based on the regression analysis of the factors and the predicted properties of the nanocomposite films were in good agreement with the experimental results. Microfluidization effectively reduced the CNC–chitosan aggregates and improved the mechanical properties of the nanocomposite films. Microscopic analysis of the microfluidized nanocomposite films revealed a 10–15 times reduction in the size of the aggregates compared to the non-microfluidized CNC/chitosan films and an increase in the root mean square surface roughness (Rq).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adjallé KD, Vu KD, Tyagi RD, Brar SK, Valéro JR, Surampalli RY (2011) Optimization of spray drying process for Bacillus thuringiensis fermented wastewater and wastewater sludge. Bioprocess Biosyst Eng 34(2):237–246

    Article  Google Scholar 

  • ASTM, Standard Test Method for Tensile Strength of Plastics. Annual Book of ASTM Standards, ASTM International, 1999, Method D 638-99

  • Atalay YT, Vermeir S, Witters D, Vergauwe N, Verbruggen B, Verboven P, Nicolaï BM, Lammertyn J (2011) Microfluidic analytical systems for food analysis. Trends Food Sci Technol 22(7):386–404

    Article  CAS  Google Scholar 

  • Azeredo HMC, Mattoso LHC, Avena-Bustillos RJ, Filho GC, Munford ML, Wood D, McHugh TH (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75(1):N1–N7

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Sanchez JY, Dufresne A (2004) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45:4149–4157

    Article  CAS  Google Scholar 

  • Balachandran M, Devanathan S, Muraleekrishnan R, Bhagawan SS (2012) Optimizing properties of nanoclay–nitrile rubber (NBR) composites using Face Centered Central Composite Design. Mater Des 35:854–862

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Bouchard J, Berry R (2011) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromolecules 12(1):167–172

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054

    Article  CAS  Google Scholar 

  • Berger J, Reist M, Mayer J, Felt O, Gurny R (2004) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57(1):35–52

    Article  CAS  Google Scholar 

  • Chen J, Liang R, Liu W, Li T, Liu C, Wu S, Wang Z (2013) Pectic-oligosaccharides prepared by dynamic high-pressure microfluidization and their in vitro fermentation properties. Carbohydr Polym 91(1):175–182

    Article  CAS  Google Scholar 

  • De Mesquita JP, Donnici CL, Pereira FV (2010) Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules 11(2):473–480

    Article  Google Scholar 

  • Dogan N, McHugh TH (2007) Effects of microcrystalline cellulose on functional properties of hydroxy propyl methyl cellulose microcomposite films. J Food Sci 72(1):E016–E022

    Article  CAS  Google Scholar 

  • Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303

    Article  CAS  Google Scholar 

  • Favier V, Chanzy H, Cavaille JY (1996) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    Article  Google Scholar 

  • Ferrer A, Filpponen I, Rodríguez A, Laine J, Rojas OJ (2012) Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255

    Article  CAS  Google Scholar 

  • Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18(41):5002

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  • Huq T, Salmieri S, Khan A, Khan RA, Le Tien C, Riedl B, Fraschinic C, Bouchard J, Uribe-Calderon J, Kamal MR, Lacroix M (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90:1757–1763

    Article  CAS  Google Scholar 

  • Jafari SM, He Y, Bhandari B (2007) Optimization of nano-emulsions production by microfluidization. Eur Food Res Technol 225:733–741

    Article  CAS  Google Scholar 

  • Jo Y-J, Kwon Y-J (2013) Characterization of β-carotene nanoemulsions prepared by microfluidization technique. Food Sci Biotechnol 23(1):1–7

    Google Scholar 

  • Kanagaraj S, Varanda FR, Zhil’tsova TV, Oliveira MSA, Simões JAO (2007) Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol 67(15–16):3071–3077

    Article  CAS  Google Scholar 

  • Kasaai MR, Charlet G, Paquin P, Arul J (2003) Fragmentation of chitosan by microfluidization process. Innov Food Sci Emerg Technol 4(4):403–413

    Article  CAS  Google Scholar 

  • Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, Chauve G, Victor T, Kamal MR, Lacroix M (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90(4):1601–1608

    Article  CAS  Google Scholar 

  • Khan A, Huq T, Khan Ra, Riedl B, Lacroix M (2014) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci Nutr 54(2):163–174

    Article  CAS  Google Scholar 

  • Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084

    Article  Google Scholar 

  • Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6(6):3160–3165

    Article  CAS  Google Scholar 

  • Laneuville SI, Turgeon SL, Paquin P (2013) Changes in the physical properties of xanthan gum induced by a dynamic high-pressure treatment. Carbohydr Polym 92(2):2327–2336

    Article  CAS  Google Scholar 

  • Lee S-Y, Chun S-J, Kang I-A, Park J-Y (2009) Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. J Ind Eng Chem 15(1):50–55

    Article  Google Scholar 

  • Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Pereda M, Dufresne A, Aranguren MI, Marcovich NE (2014) Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydr Polym 101:1018–1026

    Article  CAS  Google Scholar 

  • Prashanth KVH, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential and overview. Trends Food Sci Technol 18:117–131

    Article  CAS  Google Scholar 

  • Rhim J-W (2011) Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydr Polym 86(2):691–699

    Article  CAS  Google Scholar 

  • Tsai ML, Tseng LZ, Chen RH (2009) Two-stage microfluidization combined with ultrafiltration treatment for chitosan mass production and molecular weight manipulation. Carbohydr Polym 77(4):767–772

    Article  CAS  Google Scholar 

  • Wu Q, Henriksson M, Liu X, Berglund LA (2007) A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules 8(12):3687–3692

    Article  CAS  Google Scholar 

  • Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by FPInnovations (Pointe-Claire, Canada) through the RDC program. The authors highly appreciate SEM support from Mrs. Line Mongeon, Technician of the Biomedical Engineering Department and the Facility Electron Microscopy Research (FEMR) at McGill University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Lacroix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Vu, K.D., Chauve, G. et al. Optimization of microfluidization for the homogeneous distribution of cellulose nanocrystals (CNCs) in biopolymeric matrix. Cellulose 21, 3457–3468 (2014). https://doi.org/10.1007/s10570-014-0361-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0361-9

Keywords

Navigation