Skip to main content
Log in

Isolation of a novel, crystalline cellulose material from the spent liquor of cellulose nanocrystals (CNCs)

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We have modified the standard sulphuric acid hydrolysis method for the production of cellulose nanocrystals (CNCs) to successfully isolate a novel, highly crystalline cellulose material from the spent liquor of CNCs. The novel material has a cellulose II crystal structure that is distinctly different from the cellulose I crystal structure of CNCs. The modified method uses a shorter time for the hydrolysis, followed by maintaining a high residual acid concentration for the separation of the spent liquor and CNCs, and by adding the spent liquor to water. The modified method offers an opportunity to concurrently produce CNCs in up to ~40 % yield and the novel, highly crystalline, sulphated cellulose II in ~15 % yield in separate and pure forms from sulphuric acid hydrolysis of a commercial northern bleached softwood kraft pulp. It can potentially reduce the production cost of CNCs, allow easier downstream processing of CNCs and recovery of sulphuric acid, and generate a new cellulose bio-material for product development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrews M (2013) Cellulose nanocrystals make light work. 17th International Symposium Wood Fibre Pulping Chem—Pre-Symposium, Victoria, BC, June 9–10

  • Atalla RH, Nagel SC (1974a) Annealing and increased order in cellulose II. Polym Lett Ed 12:565–568

    Article  CAS  Google Scholar 

  • Atalla RH, Nagel SC (1974b) Cellulose: its regeneration in the native lattice. Science 185:522–523

    Article  CAS  Google Scholar 

  • Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    Article  CAS  Google Scholar 

  • Beck S, Bouchard J, Berry R (2011) Nanocrystalline cellulose self-assembly: control, mechanism and applications. 2011 Tappi International Conference Nanotechnology Renewable Matter, Washington, DC, June 6–8

  • Blackwell J, Kolpak FJ, Gardner KH (1978) The structure of celluloses I and II. Tappi J 61(1):71–72

    CAS  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180

    Article  CAS  Google Scholar 

  • Borysiak S, Doczekalska B (2005) X-ray diffraction study of pine wood treated with NaOH. Fibres Text East Eur 13(5):87–89

    CAS  Google Scholar 

  • Chen R, Jakes KA, Foreman DW (2004) Peak-fitting analysis of cotton fiber powder X-ray diffraction spectra. J Appl Polym Sci 93:2019–2024

    Article  CAS  Google Scholar 

  • Cook JG (1984) Handbook of textile fibers, v.2 manmade fibers., Woodhead textiles series no. 5Woodhead Publishing Ltd, Cambridge, pp 82–100

    Google Scholar 

  • Dong XM, Revol J-F, Gray DG (1998) Effect of microcystalline preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65

    Article  CAS  Google Scholar 

  • Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    Article  CAS  Google Scholar 

  • French AD (2013) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose. doi:10.1007/s10570-013-0030-4

    Google Scholar 

  • French AD, Bertoniere NR, Brown RM, Chanzy H, Gray D, Hattori K, Glasser W (2004) Cellulose. Kirk-Othmer encyclopedia of chemical technology, vol 5, 5th edn. Wiley, New York, pp 360–394

    Google Scholar 

  • Hamad WY, Hu TQ (2010) Structure–process–yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88(3):392–402

    CAS  Google Scholar 

  • Hashaikeh R, Hu TQ, Berry R (2012) Crystalline sulphated cellulose II and its production from sulphuric acid hydrolysis of cellulose. US Patent 8,309,708 B2

  • Hermans PH, Weidinger A (1946) On the recrystallization of amorphous cellulose. J Am Chem Soc 68(12):2547–2552

    Article  CAS  Google Scholar 

  • Hermans PH, Weidinger A (1949) X-ray studies on the crystallinity of cellulose. J Polym Sci 4:135–144

    Article  CAS  Google Scholar 

  • Immergut EH, Schurz J, Mark H (1953) Viscosity number-molecular weight relationship for cellulose and investigations of nitrocellulose in various solvents. Monatshefte fur Chemie 84(2):219–249; Translated from German to English by Phoenix Translations Code No. 40-9584

  • Ioelovich M (2012) Optimal conditions for isolation of nanocrystalline cellulose particles. Nanosci Nanotechnol 2(2):9–13

    Article  Google Scholar 

  • Jenkins R (2000) X-ray techniques: overview. In: Meyers RA (ed) Encyclopedia of analytical chemistry, applications, theory and instrumentation, vol 15. Wiley, Chichester, pp 13260–13288

    Google Scholar 

  • Kataoka Y, Kondo T (1999) Quantitative analysis for the cellulose Iα crystalline phase in developing wood cell walls. Int J Biol Macromol 24:37–41

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (eds) (1998) In: Comprehensive cellulose chemistry, vol. 1. fundamentals and analytical methods, Wiley-VCH, Weinheim, pp 15–22

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Krueger C, Thommes M, Kleinebudde P (2010) MCC SANAQ® burst”—a new type of cellulose and its suitability to prepare fast disintegrating pellets. J Pharm Innov 5:45–57

    Article  Google Scholar 

  • Kumar V, Reus-Medina MDLL, Yang D (2002) Preparation, characterization, and tabletting properties of a new cellulose-based pharmaceutical aid. Int J Pharm 235:129–140

    Article  CAS  Google Scholar 

  • MaCorsley CC III (1983) Shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent and a process for making the article. US Patent 4,416,698

  • Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633

    Article  CAS  Google Scholar 

  • Marczewski AW (2002) Solution density at 20°C—density calculator and concentration converter. http://adsorption.org/awm/utils/Density.htm

  • Perez S, Mazeau K (2004) Conformations, structures, and morphologies of celluloses. In: Dumitriu S (ed) Polysaccharides structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York, pp 41–68

    Google Scholar 

  • Pulp Paper Canada (2013) Gray wins international prize for cellulose nanocrystals research. July/August, p 22

  • Ranby BG (1951) The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164

    Article  Google Scholar 

  • Reus-Medina MDLL, Kumar V (2006) Evaluation of cellulose II powders as a potential multifunctional excipient in tablet formulations. Int J Pharm 322:31–35

    Article  Google Scholar 

  • Revol J-F, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    Article  CAS  Google Scholar 

  • Revol J-F, Godbout L, Dong X-M, Gray DG, Chanzy H (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16(1):127–134

    Article  CAS  Google Scholar 

  • Revol J-F, Godbout DL, Gray DG (1997) Solidified liquid crystals of cellulose with optically variable properties. US Patent 5,629,055

  • Rodden G (2012) Celluforce: a world first. Pulp Paper Int 54(4):11–15

    Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Gorecki W, Sanchez J-Y, Dufresne A (2004) Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose nanocrystals. J Phys Chem B 108:10845–10852

    Article  CAS  Google Scholar 

  • Sasaki M, Adschiri T, Arai K (2003) Production of cellulose II from native cellulose by near- and supercritical water solubilization. J Agric Food Chem 52:5376–5381

    Article  Google Scholar 

  • SCAN-CM 15:99 Test Method (1999) Viscosity in cupriethylenediamine solution. Scandinavian Pulp, Paper and Board, Stockholm

    Google Scholar 

  • Sebe G, Ham-Pichavant F, Ibarboure E, Koffi ALC, Tingaut P (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13:570–578

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 10:786–791

    Article  Google Scholar 

  • Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468:422–426

    Article  CAS  Google Scholar 

  • Soep H, Demoen P (1960) Volumetric microdetermination of organic sulfur following the Schoniger combustion. Microchem J IV:77–87

    Article  Google Scholar 

  • Yue Y, Zhou C, French AD, Xia G, Han G, Wang Q, Wu Q (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1187

    Article  CAS  Google Scholar 

  • Zhang J, Elder TJ, Pu Y, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohydr Polym 69:607–611

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Natural Resource Canada (NRCan) for the Forestry Transformative Technologies funding. They would also like to thank James Drummond for his assistance in the SEM experiment, Michelle Zhao and Dr. Siham Atifi for performing some repeat hydrolysis experiments, Drs. Jean Bouchard and Wadood Hamad for their very careful reviews of the report and excellent feedback, and Gail Sherson and Dr. Gilles Dorris for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Q. Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, T.Q., Hashaikeh, R. & Berry, R.M. Isolation of a novel, crystalline cellulose material from the spent liquor of cellulose nanocrystals (CNCs). Cellulose 21, 3217–3229 (2014). https://doi.org/10.1007/s10570-014-0350-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0350-z

Keywords

Navigation