Skip to main content
Log in

Study of interaction between nitrogen DBD plasma-treated viscose fibers and divalent ions Ca2+ and Cu2+

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Viscose fibers were treated with atmospheric pressure dielectric barrier discharge (DBD) plasma obtained in nitrogen in order to activate the fiber surface prior to sorption of the divalent ions Ca2+ and Cu2+. Methylene blue sorption was used for estimation of carboxyl group formation on the surface after DBD plasma treatment, through the degree of fabric staining (K/S). Sorption of divalent ions was performed from solutions of each individual ion and from solutions of calcium and copper in succession onto untreated and plasma-treated viscose samples. The quantity of sorbed metal was determined from the neutralization and iodometric titration method. Scanning electron microscopy coupled with energy dispersive X-ray analysis was used for fiber morphology and surface characterization before and after plasma treatment, and after metal ions sorption. Experiments revealed copper microparticles formation on the fiber surface when sorption of copper was performed on samples with bonded calcium. Further analysis confirmed that for growth of copper particles, both calcium ions and nitrogen DBD plasma pretreatments are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acemioglu B, Alma MH (2001) Equilibrium studies on adsorption of Cu(II) from aqueous solution on cellulose. J Colloid Interf Sci 243:81–84

    Article  CAS  Google Scholar 

  • Anand SC, Horrocks AR (2000) Handbook of technical textiles. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  • Butler O (1923) Chemical, physical, and biological properties of Bordeaux mixtures. Ind Eng Chem 15:1039–1041

    Article  CAS  Google Scholar 

  • Butler O (1928) Making Bordeaux mixture. Am J Potato Res 5:187–190

    Article  Google Scholar 

  • Cady NC, Behnke JL, Strickland AD (2011) Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of multi-drug resistant wound pathogen, A. Baumannii, and mammalian cell biocompatibility in vitro. Adv Funct Mater 21:2506–2514

    Article  CAS  Google Scholar 

  • Calvimontes A, Mauersberger P, Nitschke M, Dutschk V, Simon F (2011) Effects of oxygen plasma on cellulose surface. Cellulose 18:803–809

    Article  CAS  Google Scholar 

  • Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloid Surf B 79:5–18

    Article  CAS  Google Scholar 

  • Dixon B (2004) Pushing Bordeaux mixture. Lancet Infect Dis 4:594

    Article  Google Scholar 

  • Druz N, Andersone I, Andersons B (2001) Interaction of copper-containing preservatives with wood. Part 1. Mechanism of the interaction of copper with cellulose. Holzforschung 55:13–15

    Article  CAS  Google Scholar 

  • Edwards JV, Vigo TL (2001) Bioactive fibers and polymers. American Chemical Society, Washington, DC

    Book  Google Scholar 

  • Emam HE, Manian AP, Siroka B, Bechtold T (2012) Copper inclusion in cellulose using sodium D-gluconate complexes. Carbohyd Polym 90:1345–1352

    Article  CAS  Google Scholar 

  • Fan N, Xu L, Li J, Ma X, Qian Y (2007) Selective synthesis of plate like and shrub-like microscale copper crystallites. J Cryst Growth 299:212–217

    Article  CAS  Google Scholar 

  • Fitz-Binder C, Bechtold T (2012) Ca2+ sorption on regenerated cellulose fibres. Carbohyd Polym 90:937–942

    Article  CAS  Google Scholar 

  • Flora T (1984) Die analyse der Bordeaux-Mischung. Thermochim Acta 76:25–46

    Article  CAS  Google Scholar 

  • Fras L, Stana-Kleinschek K, Ribitsch V, Sfiligoj-Smole M, Kreze T (2002) Quantitative determination of carboxyl groups in cellulose by complexometric titration. Lenzinger Berichte 81:80–88

    CAS  Google Scholar 

  • Fras-Zemljič L, Peršin Z, Stenius P (2009) Improvement of Chitosan adsorption onto cellulosic fabrics by plasma treatment. Biomacromolecules 10:1181–1187

    Article  Google Scholar 

  • Huang L, Ou Z, Boving TB, Tyson J, Xing B (2009) Sorption of copper by chemically modified aspen wood fibers. Chemosphere 76:1056–1061

    Article  CAS  Google Scholar 

  • Jun W, Fengcai Z, Bingqiang C (2008) The solubility of natural cellulose after DBD plasma treatment. Plasma Sci Technol 10:743–747

    Article  Google Scholar 

  • Karahan HA, Ozdogan E, Demir A, Ayhan H, Seventekin N (2009) Effects of atmospheric pressure plasma treatments on certain properties of cotton fabrics. Fibres Text East Eur 17:19–22

    CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry volume l fundamentals and analytical methods. Wiley, Weinheim

    Book  Google Scholar 

  • Kontturi EJ (2005) Surface chemistry of cellulose: from natural fibers to model surfaces. Dissertation, Eindhoven, Technische Universiteit, Eindhoven

  • Kostic M, Radic N, Obradovic BM, Dimitrijevic S, Kuraica MM, Skundric P (2009) Silver-loaded cotton/polyester fabric modified by dielectric barrier discharge treatment. Plasma Process Polym 6:58–67

    Article  CAS  Google Scholar 

  • Kramar A, Prysiazhnyi V, Dojčinović B, Mihajlovski K, Obradović BM, Kuraica MM, Kostić M (2013) Antimicrobial viscose fabric prepared by treatment in DBD and subsequent deposition of silver and copper ions—investigation of plasma aging effect. Surf Coat Technol 234:92–99

    Article  CAS  Google Scholar 

  • Malek RMA, Holme I (2003) The effect of plasma treatment on some properties of cotton. Iran Polym J 12:271–280

    CAS  Google Scholar 

  • Mather RR (2009) Surface modification of textiles by plasma treatments. In: Wei Q (ed) Surface modification of textiles. Woodhead Publishing Limited, Cambridge, pp 296–317

    Chapter  Google Scholar 

  • Narayan G (1949) Studies on the chemistry of Bordeaux mixture—part I. Proc Indian Acad Sci Math Sci 29:367–379

    Google Scholar 

  • Nikiforova TE, Kozlov VA (2012) Sorption of copper(II) cations from aqueous media by a cellulose-containing sorbent. Prot Met Phys Chem Surf 48:310–314

    Article  CAS  Google Scholar 

  • Norkus E, Vaiciuniene J, Vuorinen T, Macalady DL (2004) Equilibria of Cu(II) in alkaline suspensions of cellulose pulp. Carbohyd Polym 55:47–55

    Article  CAS  Google Scholar 

  • Ozturk HB, Vu-Manh H, Bechtold T (2009) Interaction of cellulose with alkali metal ions and complexed heavy metals. Lenzinger Berichte 87:142–150

    Google Scholar 

  • Peršin Z, Stenius P, Stana-Kleinschek K (2011) Estimation of the surface energy of chemically and oxygen plasma-treated regenerated cellulosic fabrics using various calculation models. Text Res J 81:1673–1685

    Article  Google Scholar 

  • Potthast A, Rosenau T, Kosma P (2006) Analysis of oxidized functionalities in cellulose. Adv Polym Sci 205:1–48

    Article  CAS  Google Scholar 

  • Praskalo-Milanovic JZ, Kostic MM, Dimitrijevic-Brankovic SI, Skundric PD (2010) Silver-loaded lyocell fibers modified by TEMPO-mediated oxidation. J Appl Polym Sci 117:1772–1779

    CAS  Google Scholar 

  • Prysiazhnyi V, Kramar A, Dojcinovic B, Zekic A, Obradovic BM, Kuraica MM, Kostic M (2013) Silver incorporation on viscose and cotton fibers after air, nitrogen and oxygen DBD plasma pretreatment. Cellulose 20:315–325

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2005) Ion-exchange behaviour of carboxylate groups in fibrous cellulose oxidized by the TEMPO-mediated system. Carbohyd Polym 61:183–190

    Article  CAS  Google Scholar 

  • Shahidi S, Rashidi A, Ghoranneviss M, Anvari A, Rahimi MK, Moghaddam MB, Wiener J (2010) Investigation of metal absorption and antibacterial activity on cotton fabric modified by low temperature plasma. Cellulose 17:627–634

    Article  CAS  Google Scholar 

  • Shishoo R (2007) Plasma technologies for textiles. Woodhead Publishing Limited, Cambridge

    Book  Google Scholar 

  • Song J, Birbach NL, Hinestroza JP (2012) Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose 19:411–424

    Article  CAS  Google Scholar 

  • Sun D, Stylios GK (2004) Effect of low temperature plasma treatment on the scouring and dyeing of natural fabrics. Text Res J 74:751–756

    Article  CAS  Google Scholar 

  • Sundman O, Persson P, Ohman LO (2008) A multitechnique study of the interactions between H+, Na+, Ca2+ and Cu2+ and two types of softwood Kraft fibre materials. J Colloid Interf Sci 328:248–256

    Article  CAS  Google Scholar 

  • Vainio U, Pirkkalainen K, Kisko K, Goerigk G, Kotelnikova NE, Serimaa R (2007) Copper and copper oxide nanoparticles in a cellulose support studied using anomalous small-angle X-ray scattering. Eur Phys J D 42:93–101

    Article  CAS  Google Scholar 

  • Wu M, Kuga S, Huang Y (2008) Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils. Langmuir 24:10494–10497

    Article  CAS  Google Scholar 

  • Xia J, Li H, Luo Z, Wang K, Yin S, Yan Y (2010) Ionic liquid assisted hydrothermal synthesis of three-dimensional CuO peachstone-like structures. Appl Surf Sci 256:1871–1877

    Article  CAS  Google Scholar 

  • Xu S, Sun X, Ye H, You T, Song X, Sun S (2010) Selective synthesis of copper nanoplates and nanowires via a surfactant-assisted hydrothermal process. Mat Chem Phys 120:1–5

    Article  CAS  Google Scholar 

  • Yudanova TN, Skokova IF, Galbraikh LS (2000) Fabrication of biologically active fibre materials with predetermined properties. Fibre Chem 32:411–413

    CAS  Google Scholar 

  • Zhukovskii VA (2005) Current status and prospects for development and production of biologically active fibre materials for medical applications. Fibre Chem 37:352–354

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are very grateful to The Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support through projects OI 172029 and OI 171034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana D. Kramar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kramar, A.D., Žekić, A.A., Obradović, B.M. et al. Study of interaction between nitrogen DBD plasma-treated viscose fibers and divalent ions Ca2+ and Cu2+ . Cellulose 21, 3279–3289 (2014). https://doi.org/10.1007/s10570-014-0346-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0346-8

Keywords

Navigation