Skip to main content
Log in

Superelastic percolation network of polyacrylamide (PAAm)–kappa carrageenan (κC) composite

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The elasticity of the polyacrylamide (PAAm)-kappa carrageenan (κC) composite was determined as a function of (w/v-%) κC content at 40 °C. The gel composites studied contained various percentages (w/v-%) of κC. The elasticity of the swollen PAAm-κC composite was characterized by using the tensile testing technique. This study investigated the elasticity and the percolation threshold of PAAm-κC composite as a function of κC content. It is understood that the compressive elastic modulus decreases up to 1 (w/v-%) of κC and then increases at contents above 1(w/v-%) of κC. The critical exponent of elasticity y was determined between 1 and 1.6 (w/v-%) of κC and found to be 0.68. The observed elastic percolation threshold is consistent with the suggested values of the superelastic percolation network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aktaş DK, Evingür GA, Pekcan Ö (2006) Universal behaviour of gel formation from acrylamide-carrageenan mixture around the gel point: a fluorescence study. J Biomol Struct Dyn 24(1):83–90

    Article  Google Scholar 

  • Anseth KS, Bowman CN, Peppas LB (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657

    Article  CAS  Google Scholar 

  • Arbabi S, Sahimi M (1993) Mechanics of disordered solids. I. percolation on elastic networks with central forces. Phys Rev B 47(2):695–702

    Article  Google Scholar 

  • Berkowitz B, Balberg I (1993) Percolation theory and its application to groundwater hydrology. Water Res 29(4):775–794

    Article  Google Scholar 

  • Çakır E, Foegeding EA (2011) Combining protein micro protein micro phase separation and protein-polysaccharide segregative phase separation to produce gel structures. Food Hydrocoll 25:1538–1546

    Article  Google Scholar 

  • Colby RH, Gillmor JR, Rubinstein M (1993) Dynamics of near critical polymer gels. Phys Rev E 48(5):3712–3716

    Article  CAS  Google Scholar 

  • de Gennes PG (1976) On the relation between percolation theory and the elasticity of gels. Le J de Phys Lett 37:L1–L2

    Article  Google Scholar 

  • Erman B, Flory PJ (1986) Critical phenomena and transitions in swollen polymer networks and in linear macromolecules. Macromol 19:2342–2353

    Article  CAS  Google Scholar 

  • Evingür GA, Pekcan Ö (2011) Drying of polyacrylamide composite gels formed with various kappa carrageenan content. J Fluo 21:1531–1537

    Article  Google Scholar 

  • Evingür GA, Pekcan Ö (2012a) Elastic percolation of swollen polyacrylamide (PAAm)-multiwall carbon nanotubes (MWNTs) composite. Ph Transitions 85:553–564

    Article  Google Scholar 

  • Evingür GA, Pekcan Ö (2012b) Temperature effect on the swelling of PAAm–kcarrageenan composites. J Appl Polym Sci 123:1746–1754

    Article  Google Scholar 

  • Feng S, Sen PN (1984) Percolation on elastic networks: new exponent and threshold. Phys Rev Lett 52(3):216–219

    Article  Google Scholar 

  • Friedrich K, Fakirov S, Zhang Z (2005) Polymer composites from nano to macro scale. Springer, USA

  • Kantor Y, Webman I (1984) Elastic properties of random percolating systems. Phys Rev Lett 52(21):1891–1894

    Article  Google Scholar 

  • Loret C, Ribelles P, Lundin L (2009) Mechanical properties of k-carrageenan in high concentration of sugar solutions. Food Hydrocoll 23:823–832

    Article  CAS  Google Scholar 

  • Muniz EC, Geuskens G (2001) Compressive elastic modulus of polyacrylamide hydrogels and semi-IPN’s with poly (N-isoproplacrylamide). Macromolecules 34:4480–4484

    Google Scholar 

  • Nielsen LE, Lawrence RF (1994) Mechanical properties of polymers and composites. Marcel Dekker, New York

    Google Scholar 

  • Rubinstein RH, Colby H (1994) Elastic modulus and equilibrium swelling of near critical gels. Macromolecules 27:3184–3190

    Article  CAS  Google Scholar 

  • Sahimi M (1994) Application of percolation theory. Taylor and Francis, London

    Google Scholar 

  • Schriemer HP, Pachet NG, Page JH (1996) Ultrasonic investigation of the vibrational modes of a sintered glass-bead percolation system. Waves Random Media 6:361–386

    Article  Google Scholar 

  • Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012a) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly (acrylic acid). Carbohydr Polym 87(3):2038–2045

    Article  CAS  Google Scholar 

  • Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012b) Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 19(4):1225–1237

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Argun Talat Gökçeören for the mechanical measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ö. Pekcan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evingür, G.A., Pekcan, Ö. Superelastic percolation network of polyacrylamide (PAAm)–kappa carrageenan (κC) composite. Cellulose 20, 1145–1151 (2013). https://doi.org/10.1007/s10570-013-9903-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9903-9

Keywords

Navigation