Skip to main content
Log in

Phase assembly-induced transition of three dimensional nanofibril- to sheet-networks in porous cellulose with tunable properties

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Ultralight and highly porous cellulose was fabricated via cellulose/sodium hydroxide/urea aqueous solution followed by gelation, coagulation and freeze-drying in the current work. The water content and freeze rate of cellulose coagulated sample are two crucial factors controlling the morphology, density and porosity of porous cellulose, which led to an interesting morphological transition from three dimensional nanofibrillar network to sheet network in porous cellulose. It was proposed that the aggregation and assembly of cellulose-rich phase and crystallization of water-rich phase were closely related to this transition. Based on this concept, a series of cellulose materials with densities varied from 0.129 to 0.330 g cm−3 and corresponding porosities ranged from 91.4 to 78.0 %, were obtained. The porous celluloses showed a good ductility (strain to fracture is more than 30 %) and high modulus, which also could be tuned by porous morphology. The new understanding on the morphological transition in porous cellulose could be beneficial for the development of “green” porous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129

    Article  CAS  Google Scholar 

  • Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548

    Article  CAS  Google Scholar 

  • Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci Part B: Polym Phys 44:3093–3101

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Chang C, Cheng G, Chen X, Chu B (2007) Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature. Chem Phys Chem 8:1572–1579

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351

    Article  CAS  Google Scholar 

  • Chang CY, Zhang LN (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53

    Article  CAS  Google Scholar 

  • Chang CY, Zhang LN, Zhou JP, Zhang LN, Kennedy JF (2010) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82:122–127

    Google Scholar 

  • Dash R, Li Y, Ragauskas AJ (2012) Cellulose nanowhisker foams by freeze casting. Carbohydr Polym 88:789–792

    Article  CAS  Google Scholar 

  • Deng M, Zhou Q, Du A, van Kasteren JV, Wang Y (2009) Preparation of nanoporous cellulose foams from cellulose-ionic liquid solutions. Mater Lett 63:1851–1854

    Article  CAS  Google Scholar 

  • Desbrieres J, Hirrien M, Ross-Murphy S (2000) Thermogelation of methylcellulose: rheological considerations. Polymer 41:2451–2461

    Article  CAS  Google Scholar 

  • Duchemin BJ, Staiger MP, Tucker N, Newman RH (2010) Aerocellulose based on all-cellulose composites. J Appl Polym Sci 115:216–221

    Article  CAS  Google Scholar 

  • Gavillon R, Budtova T (2008) Aero cellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules 9:269–277

    Article  CAS  Google Scholar 

  • Gesser HD, Goswami PC (1989) Aerogels and related porous materials. Chem Rev 89:765–788

    Article  CAS  Google Scholar 

  • Han J, Zhou C, Wu Y, Liu F, Wu Q (2013) Self-assembling behavior of cellulose nanoparticles during freeze drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 14:1529–1540

    Article  CAS  Google Scholar 

  • Heymann E (1935) Studies on sol-gel transformations. I. The inverse sol-gel transformation of methylcellulose in water. Trans Faraday Soc 31:846–864

    Article  CAS  Google Scholar 

  • Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nano fibrillar cellulose aerogels. Cellulose 15:121–129

    Article  CAS  Google Scholar 

  • Huang SJ (1995) Polymer waste management–biodegradation, incineration, and recycling. J Macromol Sci Part A Pure Appl Chem 32:593–597

    Article  Google Scholar 

  • Hüsing N, Schubert U (1998) Aerogels-airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37:22–45

    Article  Google Scholar 

  • Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135

    Article  CAS  Google Scholar 

  • Ishikawa A, Okano T, Sugiyama J (1997) Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, III and IV. Polymer 38:463–468

    Article  CAS  Google Scholar 

  • Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloids Surf A 240:63–67

    Article  CAS  Google Scholar 

  • Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Kolpak FJ, Blackwell J (1976) Determination of the structure of cellulose II. Macromolecules 9:273–278

    Article  CAS  Google Scholar 

  • Lee J, Deng Y (2011) The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter 7:6034–6040

    Article  CAS  Google Scholar 

  • Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M (2008) Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung 62:129–135

    Article  CAS  Google Scholar 

  • Liebner F, Haimer E, Wendland M, Neouze MA, Schlufter K, Miethe P, Heinze T, Potthast A, Rosenau T (2010) Aerogels from unaltered bacterial cellulose: application of sc CO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels. Macromol Biosci 10:349–352

    Article  CAS  Google Scholar 

  • Maeda H, Nakajima M, Hagiwara T, Sawaguchi T, Yano S (2006) Bacterial cellulose/silica hybrid fabricated by mimicking biocomposites. J Mater Sci 41:5646–5656

    Article  CAS  Google Scholar 

  • Müller FA, Müller L, Hofmann I, Greil P, Wenzel MM, Staudenmaier R (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27:3955–3963

    Article  Google Scholar 

  • O’Brien FJ, Harley BA, Yannas IV, Gibson LJ (2005) The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26:433–441

    Article  Google Scholar 

  • Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499

    Article  Google Scholar 

  • Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev-Columbus 102:4243–4266

    Article  CAS  Google Scholar 

  • Qi H, Chang C, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15:779–787

    Article  CAS  Google Scholar 

  • Raymond S, Kvick A, Chanzy H (1995) The structure of cellulose-II: a revisit. Macromolecules 28:8422–8425

    Article  CAS  Google Scholar 

  • Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose-NaOH solutions. Biomacromolecules 4:259–264

    Article  CAS  Google Scholar 

  • Sehaqui H, Salajková M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644

    Article  CAS  Google Scholar 

  • Sescousse R, Budtova T (2009) Influence of processing parameters on regeneration kinetics and morphology of porous cellulose from cellulose-NaOH-water solutions. Cellulose 16:417–426

    Article  CAS  Google Scholar 

  • Sescousse R, Gavillon R, Budtova T (2011) Aero cellulose from cellulose-ionic liquid solutions: Preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes. Carbohydr Polym 83:1766–1774

    Article  CAS  Google Scholar 

  • Svagan AJ, Jensen P, Dvinskikh SV, Furó I, Berglund LA (2010) Towards tailored hierarchical structures in cellulose nanocomposite biofoams prepared by freezing/freeze-drying. J Mater Chem 20:6646–6654

    Article  CAS  Google Scholar 

  • Tan C, Fung BN, Newman JK, Vu C (2001) Organic aerogels with very high impact strength. Adv Mater 13:644–646

    Article  CAS  Google Scholar 

  • Tsioptsias C, Stefopoulos A, Kokkinomalis I, Papadopoulou L, Panayiotou C (2008) Development of micro-and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO2. Green Chem 10:965–971

    Article  CAS  Google Scholar 

  • Westman L, Lindström T (1981) Swelling and mechanical properties of cellulose hydrogels. i. preparation, characterization, and swelling behavior. J Appl Polym Sci 26:2519–2532

    Article  CAS  Google Scholar 

  • Yan L, Gao Z (2008) Dissolving of cellulose in PEG/NaOH aqueous solution. Cellulose 15:789–796

    Article  CAS  Google Scholar 

  • Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    Article  CAS  Google Scholar 

  • Zhang W, Zhang Y, Lu CH, Deng YL (2012) Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water. J Mater Chem 22:11642–11650

    Article  CAS  Google Scholar 

  • Zhou JP, Zhang LN, Cai J (2004) Behavior of cellulose in NaOH/urea aqueous solution characterized by light scattering and viscometry. J Polym Sci Part B Polym Phys 42:347–353

    Article  CAS  Google Scholar 

  • Zhou JP, Chang CY, Zhang RP, Zhang LN (2007) Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol Biosci 7:804–809

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (Grants No. 51121001, 51203104, and 50925311), and New Teachers Fund for Doctor Stations, Ministry of Education (No. 20120181120101) for financial support. We also would like to express sincere thanks to the Shanghai Synchrotron Radiation Facility (SSRF, Shanghai, China), for the kind help on WAXD measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gan-Ji Zhong or Zhong-Ming Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, CY., Zhong, GJ., Huang, HD. et al. Phase assembly-induced transition of three dimensional nanofibril- to sheet-networks in porous cellulose with tunable properties. Cellulose 21, 383–394 (2014). https://doi.org/10.1007/s10570-013-0096-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0096-z

Keywords

Navigation