Skip to main content

Advertisement

Log in

Sorption of iron(III)–alginate complexes on cellulose fibres

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Multivalent ions take a significant role in the sorption of soluble polysaccharides on solid cellulose substrates and thus demonstrate an important principle in structural polysaccharide organisation. Sorption of Fe(III)–alginate complexes on lyocell fibres as model for the insoluble cellulose matrix has been studied between pH 3–13, at 30 and 60 °C. Sorption maximum of the Fe(III)–alginate complex was observed at pH 3 where the sorbed amounts of alginate and iron were 6,600 and 85 mg iron per kg cellulose respectively. Under the experimental conditions used, a concentration of 0.05 mM Fe(III) is sufficient to achieve surface sorption of Fe(III)–alginate complex. The alginate sorption exhibited minor dependence on molar ratio of Fe(III) to alginate. In environmental scanning electron microscopy no deposition of Fe-hydroxides on the fiber surface was detected. The thickness of the adsorbed Fe(III)–alginate layer on the fiber surface was estimated with 12–22 nm. Tensile strength and abrasion resistance of Fe(III)–alginate treated fibers were not reduced through the sorption treatment. Alginate modified cellulose is of interest as material for medical application, as sorbent and textile finish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barbosa AM, Granja LP, Barrias CC, Amaral FI (2005) Polysaccharides as scaffolds for bone regeneration. ITBM–RBM 26:212–217

    Google Scholar 

  • Bechtold T, Burtscher E, Turcanu A (2002) Ca2+–Fe3+-d-gluconate-complexes in alkaline solution complex stabilities and electrochemical properties. J Chem Soc Dalton Trans 2683–2688

  • Bechtold T, Manian AP, Ozturk HB, Paul U, Siroka B, Siroky J, Soliman H, Vo LTT, Vu-Manh H (2013) Ion-interactions as driving force in polysaccharide assembly. Carbohydr Polym 93:316–323

    Article  CAS  Google Scholar 

  • Bocharova N, Zavalov O, MacVittie K, Arugula MA, Guz NV, Dokukin ME, Halámek J, Sokolov I, Privman V, Katz E (2012) Biochemical logic approach to biomarker-activated drug release. J Mater Chem 22:19709–19717

    Article  CAS  Google Scholar 

  • Bredereck K, Hermanutz F (2005) Man-made cellulos. Rev Progr Color Technol 35:59–75

    Article  CAS  Google Scholar 

  • Cain RJ, Lalgudi RS (2011) Stain-repellent compositions for textile treatment. WO2011023982A1, 261888

  • Chen KL, Mylon SE, Elimelech M (2006) Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ Sci Technol 40(5):1516–1523

    Article  CAS  Google Scholar 

  • Chiaoprakobkij N, Sanchavanakit N, Subbalekha K, Pavasant P, Phisalaphong M (2011) Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr Polym 85:548–553

    Article  CAS  Google Scholar 

  • Cifci C, Sanli O (2010) Crossflow filtration of iron(III), copper(II), and cadmium(II) aqueous solutions with alginic acid/cellulose composite membranes. J Appl Polym Sci 115:616–623

    Article  CAS  Google Scholar 

  • Cifci C, Sanli O (2011) Poly(vinyl pyrrolidone)-enhanced crossflow filtration of Fe(III), Cu(II) and Cd(II) ions using alginic acid/cellulose composite membranes. Desalin Water Treat 29:87–95

    Article  CAS  Google Scholar 

  • Deng H, Zhou X, Wang X, Zhang C, Ding B, Zhang Q, Du Y (2010) Layer-by-layer structured polysaccharides film-coated cellulose nanofibrous mats for cell culture. Carbohydr Polym 80:474–479

    Article  CAS  Google Scholar 

  • Emam HE, Manian AP, Široká B, Bechtold T (2012) Copper inclusion in cellulose using sodium d-gluconate complexes. Carbohydr Polym 90:1345–1352

    Article  CAS  Google Scholar 

  • Ferrari E, Saladini M (2004) Iron (III) complexing ability of carbohydrate derivatives. J Inorg Biochem 98:1002–1008

    Article  CAS  Google Scholar 

  • Finotelli VP, Morales AM, Rocha-Leao HM, Baggio-Saitovitch ME, Rossi MA (2004) Magnetic studies of iron (III) nanoparticles in alginate polymer for drug delivery applications. Mater Sci Eng C24:625–629

    CAS  Google Scholar 

  • Franke W (1931) Iron complexes of tartaric acid. Liebigs Ann Chem 486:242–284

    Article  CAS  Google Scholar 

  • Gorensek M, Bukosek V (2006) Zinc and alginate for multipurpose textiles. Acta Chem Slov 53:223–228

    CAS  Google Scholar 

  • Griffiths B, Jacques E, Bishop SM (1998) Wound dressing comprising a blend of cellulose and alginate fibers. WO9809590A1, 169427

  • Hammer KD, Winter H (1991) Flat or tubular films of hydrated cellulose. DE4002083A1, 561491

  • Huang C–C, Lai S-H, Cheng S-L, Chang G-W (2009) Designed artificial skins prepared from modified microbial cellulose dressings for wound healing. PMSE Prepr 101:1601–1602

    CAS  Google Scholar 

  • Jin Z, Güven G, Bocharova V, Halamek J, Tokarev I, Minko S, Melman A, Mandler D, Katz E (2012a) Electrochemically controlled drug-mimicking protein release from iron–alginate thin-films associated with an electrode. ACS Appl Mater Interfaces 4:466–475

    Article  CAS  Google Scholar 

  • Jin Z, Harvey AM, Mailloux S, Halámek J, Bocharova V, Twiss MR, Katz E (2012b) Electrochemically stimulated release of lysozyme from an alginate matrix cross-linked with iron cations. J Mater Chem 22:19523–19528

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascination biopolymer and sustainable raw material. Angew Chem 44:3358–3393

    Article  CAS  Google Scholar 

  • Knittel D, Schollmeyer E (2008) Unconventional textile finishes part 2: textile finishes with alginate and pectin and cellulose. Melliand Textilberichte 89:32–35

    CAS  Google Scholar 

  • Kongdee A, Bechtold T (2004) The complexation of Fe(III)–ions in cellulose fibers: a fundamental property. Carbohydr Polym 56:47–53

    Article  CAS  Google Scholar 

  • Liu M, Yue X, Dai Z, Ma Y, Xing L, Zha Z, Liu S, Li Y (2009) Novel thrombo-resistant coating based on iron–polysaccharide complex multilayers. ACS Appl Mater Interfaces 1:113–123

    Article  CAS  Google Scholar 

  • Machida-Sano I, Matsuda Y, Namiki H (2009) In vitro adhesion of human dermal fibroblasts on iron cross-linked alginate films. Biomed Mater 4:025008

    Article  Google Scholar 

  • Mehltretter CL, Alexander BH, Rist CE (1953) Sequestration by sugar acids. Ind Eng Chem 45:2782

    Article  CAS  Google Scholar 

  • Mueller PJ, Christner A, Feustel M, Möhring U, Neudeck A (2004) Biotechnology and textile structures (part 2). Melliand Textilberichte 85:490–492

    CAS  Google Scholar 

  • Naito N, Kawanaka S, Wada S (2005) Manufacture of water-absorption materials JP2005263858A, 1045099

  • Nesterova VM, Walton AS, Webb J (2000) Nanoscale iron(III) oxyhydroxy aggregates formed in the presence of functional water-soluble polymers: models for iron(III) biomineralisation processes. J Inorg Biochem 79:109–118

    Article  CAS  Google Scholar 

  • Paul UC, Manian AP, Široká B, Duelli H, Bechtold T (2012) Sorption of anionic polysaccharides by cellulose. Carbohydr Polym 87:695–700

    Article  CAS  Google Scholar 

  • Pecsok RL, Sandera J (1955) The gluconate complexes II The ferric-gluconate system. J Am Chem Soc 77(6):1489–1494

    Article  CAS  Google Scholar 

  • Russo R, Abbate M, Malinconico M, Santagata G (2010) Effect of polyglycerol and the crosslinking on the physical properties of a blend alginate-hydroxyethylcellulose. Carbohydr Polym 82:1061–1067

    Article  CAS  Google Scholar 

  • Seely RG, Hart LR (1976) Binding of aluminum and aluminum alizarin to alginate. Macromolecules 9(3):483–489

    Article  CAS  Google Scholar 

  • Sipos P, St Pierre GT, Tombacz E, Webb J (1995) Rod-like iron (III) oxyhydroxide particles in iron (III)–polysaccharide solutions. J Inorg Biochem 58:129–138

    Article  CAS  Google Scholar 

  • Somsook E, Hinsin D, Buakhrong P, Teanchai R, Mophan N, Pohmakotr M, Shiowatana J (2005) Interactions between iron (III) and sucrose, dextran, or starch in complexes. Carbohydr Polym 61:281–287

    Article  CAS  Google Scholar 

  • Son HJ, Jung JH, Son T-W (2012) Anionic polymer salt-coated cellulose fibers with good antibacterial and deodorization effect. KR1125253B1, 432275

  • Sun T, Lonsky W, Li Y, Qin J, Zhang X, Dutkiewicz J (2001) Cellulosic fibrous materials containing an activating agent for superabsorbent polymers. WO2001047570A1, 489271

  • Sreeram JK, Shrivastava YH, Nair UB (2004) Studies on the nature of interaction of iron (III) with alginates. Biochemica Biophysica Acta 1670:121–125

    Article  CAS  Google Scholar 

  • Vu-Manh H, Öztuerk H, Bechtold T (2010) Swelling and dissolution mechanism of lyocell fiber in aqueous alkaline solution containing ferric tartaric acid complex. Cellulose 17:521–532

    Article  CAS  Google Scholar 

  • Wagberg L (2000) Polyelectrolyte adsorption onto cellulose fibers—a review. Nord Pulp Pap Res J 15(5):586–597

    Article  CAS  Google Scholar 

  • Weerawarna SA, Bing S (2008) Preparation of cellulose fibers having superabsorbent particles adhered to cellulose fibers and adhering superabsorbent particles to cellulose fibers. US20080078514A1, 419453

  • Zhang L, Zhou D, Wang H, Cheng S (1997) Ion-exchange membranes blended by cellulose cuoxam with alginate. J Membr Sci 124:195–201

    Article  CAS  Google Scholar 

  • Zhang L, Zhou J, Zhou D, Tang Y (1999) Adsorption of cadmium and strontium on cellulose/alginic acid ion-exchange membrane. J Membr Sci 162:103–109

    Article  CAS  Google Scholar 

  • Zhang L, Cai J, Zhou J, Tang Y (2004) Adsorption of Cd2+ and Cu2+ on ion-exchange beads from cellulose/alginic acid blend. Sep Sci Technol 39:1203–1219

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007–2013] under Grant Agreement No. 214015. The authors would like to acknowledge to Versuchsanstalt-Textil and the HTL-Dornbirn for the use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bechtold.

Additional information

Research Institute of Textile Chemistry and Textile Physics is a member of EPNOE-European Polysaccharide Network of Excellence, www.epnoe.eu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, U.C., Manian, A.P., Široká, B. et al. Sorption of iron(III)–alginate complexes on cellulose fibres. Cellulose 20, 2481–2490 (2013). https://doi.org/10.1007/s10570-013-0013-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0013-5

Keywords

Navigation