Skip to main content

Advertisement

Log in

Facile fabrication of transparent cellulose films with high water repellency and gas barrier properties

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Transparent and water repellent gas barrier cellulose films were fabricated by surface modification of alkali/urea regenerated cellulose (AUC) films by soaking in cationic alkylketene dimer (AKD) dispersion, drying, and heating. Highly water repellent and excellent gas barrier properties were obtained for AKD-treated and heated AUC films due to covering of the film surfaces by hydrophobic AKD components. The maximum AKD content of the films was 0.2 %. Oxygen transmission rates for AKD-treated AUC films at 0 % relative humidity (RH) were less than 0.0005 mL m−2 day−1 kPa−1, the lowest detection limit of the instrument. Water contact angles on the AUC film increased from 50 to 110° after AKD treatment, and water uptake (immersion in water for 6 days) decreased from 92 to 20 %. Moreover, oxygen permeability decreased from 0.56 and 5.8 to 0.13 and 2.1 mL μm m−2 day−1 kPa−1 at 50 and 75 % RH, respectively, when the AKD content of the film was increased from 0 to 0.2 %. The present AKD-treated AUC film also had high light transparency (88 % at 600 nm), tensile strength (168 MPa), elongation at break (29 %), and work of fracture (37 MJ m−3). FT–IR analysis showed that AKD components were still present as major species on the AKD-treated film surfaces without hydrolysis at 2 months after conditioning the films at 23 °C and 50 % RH, indicating that such AKD molecules contributed to the hydrophobic nature of the AKD-treated AUC films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Asakura K, Iwamoto M, Isogai A (2006) The effects of AKD oligomers present in AKD wax on dispersion stability and paper sizing performance. Nord Pulp Paper Res J 2006:245–252

    Article  Google Scholar 

  • Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24:4785–4790

    Article  CAS  Google Scholar 

  • Bras J, Vaca-Garcia C, Borredon ME, Glasser W (2007) Oxygen and water vapor permeability of fully substituted long chain cellulose esters (LCCE). Cellulose 14:367–374

    Article  CAS  Google Scholar 

  • Edlund U, Zhu Ryberg YZ, Albertsson AC (2010) Barrier films from renewable forestry waste. Biomacromolecules 11:2532–2538

    Article  CAS  Google Scholar 

  • Fujisawa S, Saito T, Isogai A (2012) Nano-dispersion of TEMPO-oxidized cellulose/aliphatic amine salts in isopropyl alcohol. Cellulose 19:459–466

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwamoto S, Kumamoto Y, Ohdaira T, Suzuki R, Isogai A (2011) Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy. Biomacromolecules 12:4057–4062

    Article  CAS  Google Scholar 

  • Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807

    Article  CAS  Google Scholar 

  • Hartman J, Albertsson AC, Sjöberg J (2006) Surface-and bulk-modified galactoglucomannan hemicellulose films and film laminates for versatile oxygen barriers. Biomacromolecules 7:1983–1989

    Article  CAS  Google Scholar 

  • Isogai A (1999) Mechanism of paper sizing by alkylketene dimer. J Pulp Paper Sci 25:251–255

    CAS  Google Scholar 

  • Isogai A, Onabe F, Usuda M (1992a) Changes in zeta potentials of amorphous cellulose particles with aluminum sulfate. Sen’i Gakkaishi 48:649–654

    Article  CAS  Google Scholar 

  • Isogai A, Taniguchi R, Onabe F, Usuda M (1992b) Sizing mechanism of alkylketene dimers, part 2. Deterioration of alkylketene dimer emulsion. Nord Pulp Paper Res J 6:205–211

    Article  Google Scholar 

  • Isogai A, Kitaoka C, Onabe F (1997) Effects of carboxyl groups in pulp on retention of alkylketene dimer. J Pulp Paper Sci 23:J215–J219

    CAS  Google Scholar 

  • Kannangara D, Shen W (2008) Roughness effects of cellulose and paper substrates on water drop impact and recoil. Colloids Surf A 330:151–160

    Article  CAS  Google Scholar 

  • Klemm D, Heubletin B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12:633–641

    Article  CAS  Google Scholar 

  • Miller KS, Krochta JM (1997) Oxygen and aroma barrier properties of edible films: a review. Trends Food Sci Technol 8:228–237

    Article  CAS  Google Scholar 

  • Obokata T, Isogai A (2007) The mechanism of wet-strength development of cellulose sheets prepared with polyamideamine–epichlorohydrin (PAE) resin. Colloids Surf A 302:525–531

    Article  CAS  Google Scholar 

  • Revell KM (1991) High barrier metallized film. US Patent 5021298

  • Roberts JC (1996) Paper Chemistry, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Yang Q, Lue A, Qi H, Sun Y, Zhang X, Zhang L (2009) Properties and bioapplications of blended cellulose and corn protein films. Macromol Biosci 9:849–856

    Article  CAS  Google Scholar 

  • Yang Q, Lue A, Zhang L (2010) Reinforcement of ramie fibers on regenerated cellulose films. Compos Sci Technol 70:2319–2324

    Article  CAS  Google Scholar 

  • Yang Q, Fukuzumi H, Saito T, Isogai A, Zhang L (2011a) Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions. Biomacromolecules 12:2766–2771

    Article  CAS  Google Scholar 

  • Yang Q, Qin X, Zhang L (2011b) Properties of cellulose films prepared from NaOH/urea/zincate aqueous solution at low temperature. Cellulose 18:681–688

    Article  CAS  Google Scholar 

  • Yang Q, Fujisawa S, Saito T, Isogai A (2012) Improvement of mechanical and oxygen barrier properties of cellulose films by controlling drying conditions of regenerated cellulose hydrogels. Cellulose 19:695–703

    Article  CAS  Google Scholar 

  • Yoshida Y, Yanagisawa M, Isogai A, Suguri N, Sumikawa N (2005) Preparation of polymer brush-type cellulose β-ketoesters using LiCl/1,3-dimethyl-2-imidazolidinone as a solvent. Polymer 46:2548–2557

    Article  CAS  Google Scholar 

  • Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602

    Article  CAS  Google Scholar 

  • Zhang L, Zhou Q (1997) Water-resistant film from polyurethane/nitrocellulose coating to regenerated cellulose. Ind Eng Chem Res 36:2651–2656

    Article  CAS  Google Scholar 

  • Zhu Ryberg YZ, Edlund U, Albertsson AC (2011) Conceptual approach to renewable barrier film design based on wood hydrolysate. Biomacromolecules 12:1355–1362

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Japan Society for the Promotion of Science (JSPS): Grant-in-Aid for Scientific Research S (21228007), and Research Fellowships for Young Scientists (24-7663).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Isogai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1600 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Q., Saito, T. & Isogai, A. Facile fabrication of transparent cellulose films with high water repellency and gas barrier properties. Cellulose 19, 1913–1921 (2012). https://doi.org/10.1007/s10570-012-9790-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9790-5

Keywords

Navigation