Skip to main content
Log in

The use of dyed bacterial cellulose to monitor cellulase complex activity

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) membranes covalently dyed with Remazol Brilliant Blue R (RBB) was used as an advantageous chromogenic substrate for the detection and measurement of the activity of cellulolytic enzymes. The covalent coupling was confirmed using nuclear magnetic resonance techniques. The BC membranes, both dyed and non-dyed, were saccharified with a 1:1 combination of (endoglucanases + cellobiohydrolases):β-glucosidase. Native BC required a lower enzyme loading for the release of 2 mg of reducing sugars. A higher loading was required for the RBB-BC, which, in turn, was more easily hydrolysed than both the native and the RBB-Whatman n.1 filter paper standard substrates. The enzymatic hydrolysis kinetics of RBB-BC confirmed the correlation between the release of reducing sugars and dyed products as indicated by the Pearson’s correlation coefficient (r = 0.9950). Thin layer chromatography was used to monitor glucose and traces of cellobiose as the main hydrolysis products from native BC, whereas RBB-cellobiose was markedly dominant over RBB-glucose in the case of RBB-BC hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amano Y, Nozaki K, Kanda T, Bowling AJ, Saxena IM, Brown Jr MR (2004) Analysis of cellulase action using bacterial cellulose with unique structure. American Chemical Society 222th Meeting 227:U-306-cell171

    Google Scholar 

  • Brown AJ (1886) On an acetic acid ferment which forms cellulose. J Chem Soc 49:432–439

    Article  CAS  Google Scholar 

  • Brown Jr RM (2011) Microbial cellulose: a new resource for wood, paper, texties, food and specialty products. The University of Texas at Austin. http://www.botany.utexas.edu/facstaff/facpages/mbrown/. Accessed March 2011

  • Cavaco-Paulo A, Almeida L (1994) Cellulase hydrolysis of cotton cellulose: the effects of mechanical action, enzyme concentration and dyed substrates. Biocatal Biotransform 10(1–4):353–360. doi:10.3109/10242429409065244

    Article  CAS  Google Scholar 

  • Corti GS, Botaro VR, Gil LF, Gil RPF (2004) Estudo da Capacidade de Complexação de Íons Cu + 2 em Solução Aquosa Usando Celulose Modificada com Anidrido Succínico e com Poliaminas. Polimeros 14(005):313–317

    Article  Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose: the natural power to heal wounds. Biomaterials 27(2):145–151

    Article  CAS  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown MR Jr (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12

    Article  CAS  Google Scholar 

  • Decker SR, Adney WS, Jennings E, Vinzant TB, Himmel ME (2003) Automated filter paper assay for determination of cellulase activity. Appl Biochem Biotech 105–108:689–703

    Article  Google Scholar 

  • Fernley HN (1963) The use of reactive dyestuffs in enzymology: new substrates for cellulolytic enzymes. Biochem J 87(1):90–95

    CAS  Google Scholar 

  • Fontana JD, Desouza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, Desouza SJ, Narcisco GP, Bichara JA, Farah LFX (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotech 24–5:253–264

    Article  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268

    Article  CAS  Google Scholar 

  • Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-Ferrer J, Martínez-Pastor J (2009) Development of self-assembled bacterial cellulose-starch nanocomposites. Mater Sci Eng C 29(4):1098–1104

    Article  CAS  Google Scholar 

  • Gromet-Elhanan Z, Hestrin S (1963) Synthesis of cellulose by Acetobacter xylinum—VI. Growth on citric acid-cycle intermediates. J Bacteriol 85:284–292

    CAS  Google Scholar 

  • Hayashi N, Sugiyama J, Okano T, Ishihara M (1997) The enzymatic susceptibility of cellulose microfibrils of the algal-bacterial type and the cotton-ramie type. Carbohyd Res 305(2):261–269

    Article  CAS  Google Scholar 

  • Hsieh YC, Yano H, Nogi M, Eichhorn S (2008) An estimation of the young’s modulus of bacterial cellulose filaments. Cellulose 15(4):507–513. doi:10.1007/s10570-008-9206-8

    Article  CAS  Google Scholar 

  • Itzhaki RF, Gill DM (1964) A micro-biuret method for estimating proteins. Anal Biochem 9(4):401–410. doi:10.1016/0003-2697(64)90200-3

    Article  CAS  Google Scholar 

  • Lai TE, Pullammanappallil PC, Clarke WP (2006) Quantification of cellulase activity using cellulose-azure. Talanta 69(1):68–72

    Article  CAS  Google Scholar 

  • Leisola M, Linko M (1976) Determination of the solubilizing activity of a cellulase complex with dyed substrates. Anal Biochem 70(2):592–599

    Article  CAS  Google Scholar 

  • Luo X, Zhu JY (2011) Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzyme Microbial Technol 48(1):92–99. doi:10.1016/j.enzmictec.2010.09.014

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Zyl WHv, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and Biotechnology. Microbiol Mol Biol R 66(3):506–577. doi:10.1128/MMBR.66.3.506-577.2002

    Article  CAS  Google Scholar 

  • Matsumura H, Sugiyama J, Glasser WG (2000) Cellulosic nanocomposites. I. Thermally deformable cellulose hexanoates from heterogeneous reaction. J Appl Polym Sci 78 (13):2242-2253. doi:10.1002/1097-4628(20001220)78:13<2242::aid-app20>3.0.co;2-5

    Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  • Nge TT, Sugiyama J, Bulone V (2010) Bacterial cellulose-based biomimetric composites. In: Magdy Elnasher (ed) Biopolymers. InTech. http://www.intechopen.com/books/biopolymers/bacterialcellulose-based-biomimetic-composites. Accessed Sept 2010

  • Pecoraro É, Manzani D, Messaddeq Y, Ribeiro SJL (2007) Chapter 17—bacterial cellulose from glucanacetobacter xylinus: preparation, properties and applications. In: Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 369–383

  • Sanchavanakit N, Sangrungraungroj W, Kaomongkolgit R, Banaprasert T, Pavasant P, Phisalaphong M (2006) Growth of human keratinocytes and fibroblasts on bacterial cellulose film. Biotechnol Prog 22(4):1194–1199. doi:10.1021/bp060035o

    Article  CAS  Google Scholar 

  • Shibazaki H, Kuga S, Okano T (1997) Mercerization and hydrolysis of bacterial cellulose. Cellulose 4:75–87

    Article  CAS  Google Scholar 

  • Wang QQ, He Z, Zhu Z, Zhang YHP, Ni Y, Luo XL, Zhu JY (2012) Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnol Bioeng 109(2):381–389. doi:10.1002/bit.23330

    Article  CAS  Google Scholar 

  • Wiederschain G (2007) Polysaccharides. Structural diversity and functional versatility. Biochem 72(6):675. doi:10.1134/s0006297907060120

    CAS  Google Scholar 

  • Yu X, Atalla RH (1998) A staining technique for evaluating the pore structure variations of microcrystalline cellulose powders. Powder Technol 98(2):135–138. doi:10.1016/s0032-5910(98)00024-2

    Article  CAS  Google Scholar 

  • Zeikus JG, Ng TK (1983) Continuous spectrophotometric assay of microbial cellulase. United States Patent 4403032

Download references

Acknowledgments

The authors would like to thank the National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES) and the Araucaria Foundation from SETI-PR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Domingos Fontana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiboni, M., Grzybowski, A., Passos, M. et al. The use of dyed bacterial cellulose to monitor cellulase complex activity. Cellulose 19, 1867–1877 (2012). https://doi.org/10.1007/s10570-012-9787-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9787-0

Keywords

Navigation