Skip to main content

Advertisement

Log in

Biofunctionalized bacterial cellulose membranes by cold plasmas

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) membranes were modified with oxygen (O2), nitrogen (N2), and tetrafluoromethane (CF4) plasmas in order to enhance cell affinity. The surface properties of the pristine and plasma-treated BCs were analyzed through water contact angles, electron spectroscopy for chemical analysis (ESCA), and scanning electron microscopy. O2 and N2 plasmas changed the surface of BCs to more hydrophilic while CF4 plasma altered BCs to be very hydrophobic. ESCA analyses indicated that O2, N2, and CF4 plasmas incorporated the functionalities of carbon–oxygen, amides and amino, and carbon-fluoride on BCs, respectively. The effects of the plasma treatments on the adhesion of L-929 fibroblast and Chinese hamster ovary cell lines showed that the cell adhesion and proliferation of both cells was significantly improved on BC-CF4, in contrast with that on the pristine BC, BC-O2, and BC-N2, revealing a functionality-specific effect resulted from different plasmas. Moreover, protein adsorption tests indicated that a higher quantity of proteins in cell culture medium was adsorbed on the CF4 plasma-treated BCs which presumably played the role of enhancing the subsequent cell growth. This work highlights the great potential of plasma treatments on the improvement of biocompatibility and surface property of BCs for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141

    Article  Google Scholar 

  • Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2011) Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater 7:2015

    Article  CAS  Google Scholar 

  • Blackstone BN, Willard JJ, Lee CH, Nelson MT, Hart RT, Lannutti JJ, Powell HM (2012) Plasma surface modification of electrospun fibers for adhesion-based cancer cell sorting. Integr Biol. doi:10.1039/c2ib20025b

  • Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007) Modification of nanocellulose with a xyloglucan rgd conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8:3697

    Article  CAS  Google Scholar 

  • Browne MM, Lubarsky GV, Davidson MR, Bradley RH (2004) Protein adsorption onto polystyrene surfaces studied by xps and afm. Surf Sci 553:155

    Article  CAS  Google Scholar 

  • Cai K, Rechtenbach A, Hao J, Bossert J, Jandt KD (2005) Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects. Biomaterials 26:5960

    Article  CAS  Google Scholar 

  • Capadona JR, Collard DM, Garcia AJ (2003) Fibronectin adsorption and cell adhesion to mixed monolayers of tri(ethylene glycol)- and methyl-terminated alkanethiols. Langmuir 19:1847

    Google Scholar 

  • Carlsson CMG, Stroem G (1991) Reduction and oxidation of cellulose surfaces by means of cold plasma. Langmuir 7:2492

    Article  CAS  Google Scholar 

  • Chan C-M (1993) Title of source: Polymer surface modification and characterization. Carl Hanser, GmbH & Co, Munich

    Google Scholar 

  • Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R 36:143

    Article  Google Scholar 

  • Clark DT, Shuttleworth D (1980) Plasma polymerization. II. An ESCA investigation of polymers synthesized by excitation of inductively coupled RF plasma in perfluorobenzene and perfluorocyclohexane. J Polym Sci Polym Chem 18:27

    CAS  Google Scholar 

  • Couchman JR, Hook M, Rees DA, Timpl R (1983) Adhesion, growth, and matrix production by fibroblasts on laminin substrates. J Cell Biol 96:177

    Article  CAS  Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki S, Brown JRM (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27:145

    Article  CAS  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RMJ (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12

    Google Scholar 

  • Deligianni DD, Katsala N, Ladas S, Sotiropoulou D, Amedee J, Missirlis YF (2001) Effect of surface roughness of the titanium alloy ti-6al-4v on human bone marrow cell response and on protein adsorption. Biomaterials 22:1241

    Article  CAS  Google Scholar 

  • Demura M, Takekawa T, Asakura T, Nishikawa A (1992) Characterization of low-temperatureplasma treated silk fibroin fabrics by ESCA and the use of the fabrics as an enzyme-immobilization support. Biomaterials 13:276

    Article  CAS  Google Scholar 

  • Desmet T, Morent R, Geyter ND, Leys C, Schacht E, Dubruel P (2009) Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromolecules 10:2351

    Article  CAS  Google Scholar 

  • Divya P, Krishnan LK (2009) Glycosaminoglycans restrained in a fibrin matrix improve ECM remodelling by endothelial cells grown for vascular tissue engineering. J Tissue Eng Regen M 3:377

    Article  CAS  Google Scholar 

  • Dupont-Gillain CC, Adriaensen Y, Derclaye S, Rouxhet PG (2000) Plasma-oxidized polystyrene: wetting properties and surface reconstruction. Langmuir 16:8194

    Article  CAS  Google Scholar 

  • Ellingsen JE, Johansson CB, Wennerberg A, Holmen A (2004) Improved retention and bone-to-implant contact with fluoride-modified titanium implants. Int J Oral Maxillofac Implants 19:659

    Google Scholar 

  • Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19

    Article  CAS  Google Scholar 

  • Favia P, d’Agostino R (1998) Plasma treatments and plasma deposition of polymers for biomedical applications. Surf Coat Technol 98:1102

    Article  CAS  Google Scholar 

  • Foerch R, Mcintyre NS, Sodhi RNS, Hunter DH (1990) Nitrogen plasma treatment of polyethylene and polystyrene in a remote plasma reactor. J Appl Polym Sci 40:1903

    Article  CAS  Google Scholar 

  • Galtayries A, Warocquier-Clérout R, Nagel M-D, Marcus P (2006) Fibronectin adsorption on Fe–Cr alloy studied by XPS. Surf Interface Anal 38:186

    Article  CAS  Google Scholar 

  • Gancarz I, Pozniak G, Bryjak M (2000) Modification of polysulfone membranes: 3. Effect of nitrogen plasma. Eur Polym J 36:1563

    Article  CAS  Google Scholar 

  • Gao S-H, Lei M-K, Liu Y, Wen L-S (2009) CF4 radio frequency plasma surface modification of silicone rubber for use as outdoor insulations. Appl Surf Sci 255:6017

    Article  CAS  Google Scholar 

  • Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642

    Article  CAS  Google Scholar 

  • Hamerli P, Weigel T, Groth T, Paul D (2003) Surface properties of and cell adhesion onto allylamine-plasma-coated polyethylenterephtalat membranes. Biomaterials 24:3989

    Article  CAS  Google Scholar 

  • Hamilton DW, Chehroudi B, Brunette DM (2007) Comparative response of epithelial cells and osteoblasts to microfabricated tapered pit topographies in vitro and in vivo. Biomaterials 28:2281

    Article  CAS  Google Scholar 

  • Hauser J, Koeller M, Bensch S, Halfmann H, Awakowicz P, Steinau H-U, Esenwein S (2010) Plasma mediated collagen-i-coating of metal implant materials to improve biocompatibility. J Biomed Mater Res A 94A:19

    Article  CAS  Google Scholar 

  • Hegemann D, Brunner H, Oehr C (2003) Plasma treatment of polymers for surface and adhesion improvement. Nucl Instrum B 208:281

    Article  CAS  Google Scholar 

  • Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76A:431

    Article  CAS  Google Scholar 

  • Ho QP, Wang SL, Wang MJ (2011) Creation of biofunctionalized micro patterns on poly(methyl methacrylate) by single step phase separation method. ACS Appl Mater Interfaces 3:4496

    Article  CAS  Google Scholar 

  • Hopkins J, Wheale SH, Badyal JPS (1996) Synergistic oxidation at the plasma/polymer interface. J Phys Chem 100:14062

    Article  CAS  Google Scholar 

  • Hwang DS, Sim SB, Cha HJ (2007) Cell adhesion biomaterial based on mussel adhesive protein fused with RGD peptide? Biomaterials 28:4039

    Article  CAS  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261

    Article  CAS  Google Scholar 

  • Ikada Y (1994) Surface modification of polymers for medical applications. Biomaterials 15:725

    Article  CAS  Google Scholar 

  • Inagaki N (1996) Plasma surface modification and plasma polymerization. Technomic Publishing Company, Inc, Basel

  • Ito Y (1999) Surface micropatterning to regulate cell functions. Biomaterials 20:2333

    Article  CAS  Google Scholar 

  • Karakecili AG, Demirtas TT, Satriano C, Gümüsderelioglu M, Marletta G (2007) Evaluation of L929 fibroblast attachment and proliferation on Arg-Gly-Asp-Ser (RGDs)-immobilized chitosan in serum-containing/serum-free cultures. J Biosci Bioeng 104:69

    Article  CAS  Google Scholar 

  • Khang G, Jeong BJ, Lee HB, Park JB (1995) Biocompatibility of polysulfone II. Platelet adhesion and CHO cell growth. Bio-Med Mater Eng 5:259

    CAS  Google Scholar 

  • Ku SH, Ryu J, Hong SK, Lee H, Park CB (2010) General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials 31:2535

    Article  CAS  Google Scholar 

  • Kull KR, Steen ML, Fisher ER (2005) Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes. J Memb Sci 246:203

    Article  CAS  Google Scholar 

  • Lampin M, Warocquier-Clérout R, Legris C, Degrange M, Sigot-Luizard MF (1997) Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J Biomed Mater Res 36:99

    Article  CAS  Google Scholar 

  • Lee JH, Lee HB (1993) A wettability gradient as a tool to study protein adsorption and cell adhesion on polymer surfaces. J Biomater Sci Polym Edn 4:467

    CAS  Google Scholar 

  • Lee JH, Park JW, Lee HB (1991) Cell adhesion and growth on polymer surfaces with hydroxyl groups prepared by water vapor plasma treatment. Biomaterials 12:443

    Article  CAS  Google Scholar 

  • Lee SD, Hsiue GH, Kao CY, Chang PCT (1996) Artificial cornea: surface modification of silicone rubber membrane by graft polymerization of phema via glow discharge. Biomaterials 17:587

    Article  CAS  Google Scholar 

  • Liston EM, Martinu L, Wertheimer MR (1994) Plasma surface modification of polymers for improved adhesion: acritical review. In: Strobel M, Lyons C, Mittal KL (eds) Plasma surface modification of polymers, pp 3–39

  • Lopez LC, Belviso MR, Gristina R, Nardulli M, d’Agostino R, Favia P (2007) Plasma-treated nitrogen-containing surfaces for cell adhesion: the role of the polymeric substrate. Plasma Process Polym 4:S402

    Article  Google Scholar 

  • Mangindaan D, Kuo W-H, Wang Y-L, Wang M-J (2010) Experimental and numerical modeling of the controllable wettability gradient on poly(propylene) created by sf6 plasma. Plasma Process Polym 7:754

    Article  CAS  Google Scholar 

  • Massia SP, Rao SS, Hubbell JA (1993) Covalently immobilized laminin peptide Tyr–Ile–Gly–Ser–Arg (YIGSR) supports cell spreading and co-localization of the 67-kilodalton laminin receptor with alpha-actinin and vinculin. J Biol Chem 268:8053

    CAS  Google Scholar 

  • Matuana LM, Balatinecz JJ, Sodhi RNS, Park CB (2001) Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy. Wood Sci Technol 35:191

    Article  CAS  Google Scholar 

  • Meyer-Plath AA, Schröder K, Finke B, Ohl A (2003) Current trends in biomaterial surface functionalization—nitrogen-containing plasma assisted processes with enhanced selectivity. Vacuum 71:391

    Article  CAS  Google Scholar 

  • Miao J, Pangule RC, Paskaleva EE, Hwang EE, Kane RS, Linhardt RJ, Dordick JS (2011) Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials 32:9557

    Article  CAS  Google Scholar 

  • Mitchell SA, Poulsson AHC, Davidson MR, Emmison N, Shard AG, Bradley RH (2004) Cellular attachment and spatial control of cells using micro-patterned ultra-violet/ozone treatment in serum enriched media. Biomaterials 25:4079

    Article  CAS  Google Scholar 

  • Mrksich M (2000) A surface chemistry approach to studying cell adhesion. Chem Soc Rev 29:267

    Article  CAS  Google Scholar 

  • Occhiello E, Morra M, Morini G, Garbassi F, Humphrey P (1991) Oxygen-plasma-treated polypropylene interfaces with air, water, and epoxy resins: part I. Air and water. J Appl Polym Sci 42:551

    Article  CAS  Google Scholar 

  • Pan L, Ren Y, Cui F, Xu Q (2009) Viability and differentiation of neural precursors on hyaluronic acid hydrogel scaffold. J Neurosci Res 87:3207

    Article  CAS  Google Scholar 

  • Pertile RAN, Andrade FK, Junior CA, Gama M (2010) Surface modification of bacterial cellulose by nitrogen-containing plasma for improved interaction with cells. Carbohydr Polym 3:692

    Article  Google Scholar 

  • Phong HQ, Wang S-L, Wang M-J (2010) Cell behaviors on micro-patterned porous thin films. Mater Sci Eng, B 169:94

    Article  CAS  Google Scholar 

  • Ratner BD (2004) Biomaterials science: An introduction to materials in medicine. Elsevier Academic Press, London

    Google Scholar 

  • Ratner BD, Chilkoti A, Lopez GP (1990) Plasma deposition, treatment and etching of polymers. Academic, San Diego

    Google Scholar 

  • Riviere JC, Myhra S (2009) Handbook of surface and interface analysis Methods for problem solving. CRC Press Taylor & Francis Group

  • Rovensky Y, Samoilov V (1994) Morphogenetic response of cultured normal and transformed fibroblasts, and epitheliocytes, to a cylindrical substratum surface. Possible role for the actin filament bundle pattern. J Cell Sci 107:1255

    CAS  Google Scholar 

  • Rovensky YA, Bershadsky AD, Givargizov EI, Obolenskaya LN, Vasiliev JM (1991) Spreading of mouse fibroblasts on the substrate with multiple spikes. Exp Cell Res 197:107

    Article  CAS  Google Scholar 

  • Ryu GH, Yang WS, Roh HW, Lee IS, Kim JK, Lee GH, Lee DH, Park BJ, Lee MS, Park JC (2005) Plasma surface modification of poly(d, l-lactic-co-glycolic acid)(65/35) film for tissue engineering. Surf Coat Technol 193:60

    Article  CAS  Google Scholar 

  • Sanchavanakit N, Sangrungraungroj W, Kaomongkolgit R, Banaprasert T, Pavasant P, Phisalaphong M (2006) Growth of human keratinocytes and fibroblasts on bacterial cellulose film. Biotechnol Prog 22:1194

    Article  CAS  Google Scholar 

  • Santiago LY, Nowak RW, Rubin JP, Marra KG (2006) Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials 27:2962

    Article  CAS  Google Scholar 

  • Schmidt DR, Waldeck H, Kao WJ (2009) Protein adsorption to biomaterials. In: Puleo DA, Bizios R (eds) Biological interactions on materials surfaces. Springer Science + Business Media, New York, pp 1–18

    Chapter  Google Scholar 

  • Schuler M, Owen GR, Hamilton DW, de Wild M, Textor M, Brunette DM, Tosatti SGP (2006) Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: a cell morphology study. Biomaterials 27:4003

    Article  CAS  Google Scholar 

  • Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24:4353

    Article  CAS  Google Scholar 

  • Sinn G, Reiterer A, Stanzl-Tschegg SE (2001) Surface analysis of different wood species using X-ray photoelectron spectroscopy (XPS). J Mater Sci 36:4673

    Article  CAS  Google Scholar 

  • Siow KS, Britcher L, Kumar S, Griesser HJ (2006) Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization—a review. Plasma Process Polym 3:392

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459

    Article  Google Scholar 

  • Sokolnicki AM, Fisher RJ, Harrah TP, Kaplan DL (2006) Permeability of bacterial cellulose membranes. J Memb Sci 272:15

    Article  CAS  Google Scholar 

  • Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35

    Article  CAS  Google Scholar 

  • Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419

    Article  CAS  Google Scholar 

  • Vesel A, Mozetic M, Zalar A (2007) XPS study of oxygen plasma activated pet. Vacuum 82:248

    Article  CAS  Google Scholar 

  • Wagner MS, McArthur SL, Shen M, Horbett TA, Castner DG (2002) Limits of detection for time of flight secondary ion mass spectrometry (Tof-SIMS) and X-ray photoelectron spectroscopy (XPS): detection of low amounts of adsorbed protein. J Biomater Sci-Polym E 13:407

    Article  CAS  Google Scholar 

  • Walboomers XF, Jansen JA (2001) Cell and tissue behavior on micro-grooved surfaces. Odontology 89:0002

    Article  CAS  Google Scholar 

  • Wang S, Li J, Suo J, Luo T (2010) Surface modification of porous poly(tetrafluoraethylene) film by a simple chemical oxidation treatment. Appl Surf Sci 256:2293

    Article  CAS  Google Scholar 

  • Watanabe K, Eto Y, Takano S, Nakamori S, Shibai H, Yamanaka S (1993) A new bacterial cellulose substrate for mammalian cell culture. Cytotechnology 13:107

    Article  CAS  Google Scholar 

  • Wen C-H, Chuang M-J, Hsiue G-H (2006) Plasma fluorination of polymers in glow discharge plasma with a continuous process. Thin Solid Films 503:103

    Article  CAS  Google Scholar 

  • Woodward I, Schofield WCE, Roucoules V, Badyal JPS (2003) Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films. Langmuir 19:3432

    Article  CAS  Google Scholar 

  • Yasuda H, Gazicki M (1982) Biomedical applications of plasma polymerization and plasma treatment of polymer surfaces. Biomaterials 3:68

    Article  CAS  Google Scholar 

  • Yuan H, Nishiyama Y, Wada M, Kuga S (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7:696

    Article  CAS  Google Scholar 

  • Zheng J, Ito Y, Imanishi Y (1995) Growth enhancement of anchorage-dependent and anchorage-independent cells by coimmobilization of insulin with poly(allylamine) or gelatin. Biotechnol Prog 11:677

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to demonstrate great appreciation to the financial supports from National Science Council of Taiwan (NSC 99-2621-M-011-003), the Food Industry Research and Development Institute, Taiwan (FIRDI), and National Taiwan University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Jiy Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 133 kb)

Supplementary material 2 (PPT 375 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurniawan, H., Lai, JT. & Wang, MJ. Biofunctionalized bacterial cellulose membranes by cold plasmas. Cellulose 19, 1975–1988 (2012). https://doi.org/10.1007/s10570-012-9785-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9785-2

Keywords

Navigation