Skip to main content
Log in

Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Polyvinyl alcohol (PVOH) and its nanofibrillated cellulose (NFC) reinforced nanocomposites were produced and foamed and its properties—such as the dynamic mechanical properties, crystallization behavior, and solubility of carbon dioxide (CO2)—were evaluated. PVOH was mixed with an NFC fiber suspension in water followed by casting. Transmission electron microscopy (TEM) images, as well as the optical transparency of the films, revealed that the NFC fibers dispersed well in the resulting PVOH/NFC nanocomposites. Adding NFC increased the tensile modulus of the PVOH/NFC nanocomposites nearly threefold. Differential scanning calorimetry (DSC) analysis showed that the NFC served as a nucleating agent, promoting the early onset of crystallization. However, high NFC content also led to greater thermal degradation of the PVOH matrix. PVOH/NFC nanocomposites were sensitive to moisture content and dynamic mechanical analysis (DMA) tests showed that, at room temperature, the storage modulus increased with decreasing moisture content. The solubility of CO2 in the PVOH/NFC nanocomposites depended on their moisture content and decreased with the addition of NFC. Moreover, the desorption diffusivity increased as more NFC was added. Finally, the foaming behavior of the PVOH/NFC nanocomposites was studied using CO2 and/or water as the physical foaming agent(s) in a batch foaming process. Only samples with a high moisture content were able to foam with CO2. Furthermore, the PVOH/NFC nanocomposites exhibited finer and more anisotropic cell morphologies than the neat PVOH films. In the absence of moisture, no foaming was observed in the CO2-saturated neat PVOH or PVOH/NFC nanocomposite samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ahola S (2008) Properties and interfacial behaviour of cellulose nanofibrils. Dissertation, Helsinki University of Technology

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues-Wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  Google Scholar 

  • Allen G, Bowden M, Todd S, Blundell D, Jeffs G, Davies W (1974) Composites formed by interstitial polymerization of vinyl monomers in polyurethane elastomers: 5. Variation of modulus with composition. Polymer 15:28–32

    Article  CAS  Google Scholar 

  • Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677

    Article  CAS  Google Scholar 

  • ASTM D638-10 (2010) Standard test method for tensile properties of plastics. ASTM International, West Conshohocken, PA. doi:10.1520/D0638-10

  • ASTM D792-08 (2008) Standard test methods for density and specific gravity (relative density) of plastics by displacement, ASTM International, West Conshohocken, PA

  • Avella M, Cocca M, Errico M, Gentile G (2011) Biodegradable PVOH-based foams for packaging applications. J Cell Plast 47:271

    Article  CAS  Google Scholar 

  • Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook. Wiley, New York

    Google Scholar 

  • Bulota M, Jääskeläinen A, Paltakari J, Hughes M (2011) Properties of biocomposites: influence of preparation method, testing environment and a comparison with theoretical models. J Mater Sci 46:3387–3398

    Article  CAS  Google Scholar 

  • Chandra A, Gong S, Yuan M, Turng LS, Gramann P, Cordes H (2005) Microstructure and crystallography in microcellular injection molded polyamide 6 nanocomposite and neat resin. Polym Eng Sci 45:52–61

    Article  CAS  Google Scholar 

  • Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, Belton C, Fonseca A, Nagy JB, Gun’ko YK, Blau WJ (2004) High performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv Funct Mater 14:791–798

    Article  CAS  Google Scholar 

  • Davies W (1971a) The elastic constants of a two-phase composite material. J Phys D Appl Phys 4:1176

    Article  Google Scholar 

  • Davies W (1971b) The theory of composite dielectrics. J Phys D Appl Phys 4:318

    Article  CAS  Google Scholar 

  • Doroudiani S, Chaffey CE, Kortschot MT (2002) Sorption and diffusion of carbon dioxide in wood-fiber/polystyrene composites. J Polym Sci Pol Phys 40:723–735

    Article  CAS  Google Scholar 

  • Dufresne A, Cavaillé JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194

    Article  CAS  Google Scholar 

  • Finch CA (1973) Polyvinyl alcohol: properties and applications, vol 339. Wiley, New York

    Google Scholar 

  • Gong S, Yuan M, Chandra A, Kharbas H, Osorio A, Turng L (2005) Microcellular injection molding. Int Polym Proc 20:202–214

    CAS  Google Scholar 

  • Holland B, Hay J (2001) The thermal degradation of poly (vinyl alcohol). Polymer 42:6775–6783

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito A, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater 89:461–466

    Article  CAS  Google Scholar 

  • Javadi A, Srithep Y, Lee J, Pilla S, Clemons C, Gong S, Turng LS (2010) Processing and characterization of solid and microcellular PHBV/PBAT blend and its RWF/nanoclay composites. Compos Part A Appl S 41:982–990

    Article  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747

    Article  CAS  Google Scholar 

  • Kramschuster A, Gong S, Turng LS, Li T (2007) Injection-molded solid and microcellular polylactide and polylactide nanocomposites. J Biobased Mater Bio 1:37–45

    Article  Google Scholar 

  • Kumar V, Nadella KV (2004) Microcellular foams. In: Eaves D (ed) Handbook of polymer foams. Smithers Rapra Press, Shropshire, pp 243–268

    Google Scholar 

  • Labuschagne PW, Germishuizen WA, Verryn SMC, Moolman FS (2008) Improved oxygen barrier performance of poly (vinyl alcohol) films through hydrogen bond complex with poly (methyl vinyl ether-co-maleic acid). Eur Polym J 44:2146–2152

    Article  CAS  Google Scholar 

  • Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G (2005) Polymer nanocomposite foams. Compos Sci Technol 65:2344–2363

    Article  CAS  Google Scholar 

  • Liu M, Guo B, Du M, Jia D (2007) Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol/halloysite nanotubes solution and its effect on properties of composite film. Appl Phys A Mater 88:391–395

    Article  CAS  Google Scholar 

  • Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos A 39:738–746

    Article  Google Scholar 

  • Marten FL (2002) Vinyl alcohol polymers. Kirk-Othmer Encycl Chem Technol. doi:10.1002/0471238961.2209142513011820

  • Mathew AP, Thielemans W, Dufresne A (2008) Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers. J Appl Polym Sci 109:4065–4074

    Article  CAS  Google Scholar 

  • Matuana LM, Park CB, Balatinecz JJ (1998) Cell morphology and property relationships of microcellular foamed pvc/wood-fiber composites. Polym Eng Sci 38:1862–1872

    Article  CAS  Google Scholar 

  • Naguib HE, Park CB, Panzer U, Reichelt N (2002) Strategies for achieving ultra low density polypropylene foams. Polym Eng Sci 42:1481–1492

    Article  CAS  Google Scholar 

  • Nakagaito A, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phy A Mater 78:547–552

    Article  CAS  Google Scholar 

  • Osswald TA (2006) International plastics handbook: the resource for plastics engineers. Hanser, Verlag

    Google Scholar 

  • Piringer OG, Baner AL (2000) Plastic packaging materials for food: barrier function, mass transport, quality assurance, and legislation. Wiley-Vch, Weinheim

    Google Scholar 

  • Poling BE, Thomson GH, Friend DG, Rowley RL, Wilding WV (2008) Perry’s chemical engineer’s handbook. McGraw-Hill, New York

    Google Scholar 

  • Probst O, Moore EM, Resasco DE, Grady BP (2004) Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes. Polymer 45:4437–4443

    Article  CAS  Google Scholar 

  • Rachtanapun P, Selke S, Matuana L (2003) Microcellular foam of polymer blends of HDPE/PP and their composites with wood fiber. J Appl Polym Sci 88:2842–2850

    Article  CAS  Google Scholar 

  • Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498

    Article  CAS  Google Scholar 

  • Saito T, Okita Y, Nge T, Sugiyama J, Isogai A (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohydr Polym 65:435–440

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  • Sanchez-Garcia MD, Lagaron JM (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17:987–1004

    Article  CAS  Google Scholar 

  • Sharma S (2002) Economics of composites and reinforcements. Composite materials, 1st edn. Narosa Publishing House, New Delhi, pp 20–25

    Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Stern S, Shah V, Hardy B (1987) Structure-permeability relationships in silicone polymers. J Polym Sci Pol Phys 25:1263–1298

    Article  CAS  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85

    Article  CAS  Google Scholar 

  • Tang X, Alavi S (2011) Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr Polym 85:7–16

    Article  CAS  Google Scholar 

  • Yuan M, Winardi A, Gong S, Turng LS (2005) Effects of nano and micro fillers and processing parameters on injection molded microcellular composites. Polym Eng Sci 45:773–788

    Article  CAS  Google Scholar 

  • Zhu B, Zha W, Yang J, Zhang C, Lee LJ (2010) Layered-silicate based polystyrene nanocomposite microcellular foam using supercritical carbon dioxide as blowing agent. Polymer 51:2177–2184

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the United States Department of Agriculture National Institute of Food and Agriculture Award (No. 2011-67009-20056) is gratefully acknowledged in this research. The authors would also like to thank Dr. Srikanth Pilla for his useful suggestions, Dr. Tom Kuster of the Forest Products Laboratory for performing electron microscopy, and Dr. Rick Reiner of the Forest Products Laboratory for preparing cellulose nanofibers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lih-Sheng Turng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srithep, Y., Turng, LS., Sabo, R. et al. Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming. Cellulose 19, 1209–1223 (2012). https://doi.org/10.1007/s10570-012-9726-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9726-0

Keywords

Navigation