Skip to main content
Log in

Water-activated cellulose-based electrorheological fluids

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The performance of electrorheological (ER) fluids containing cellulose particles dispersed in lubricating oil was investigated as a function of particle water content, DC electric field strength, particle concentration, and temperature. Over a range of applied electric fields (0–3 kV/mm), yield stress was observed to increase with increasing cellulose moisture content up to 8.5 wt% followed by a decrease. Water adsorbed by cellulose particles used in these systems was shown to be non-freezing bound water. The maximum ER response for a cellulose-based fluid at 25 °C was observed at a moisture content near the transition of less mobile ‘liquid-like’ (LM) water to more mobile ‘liquid-like’ (MM) non-freezing water. At a constant moisture level, yield stress increased linearly with increases in either electrical field strength or particle concentration, while the ER effect decreased with increasing temperature. The present study concludes that the performance of water-activated ER fluids based on cellulose particles is influenced strongly by the mobility of non-freezing bound water adsorbed onto cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. Berthold J. Desbrières M. Rinaudo L. Salmén (1994) ArticleTitleTypes of adsorbed water in relation to the ionic groups and their counter-ions for some cellulose derivatives Polymer 35 5729–5736

    Google Scholar 

  • J. Berthold M. Rinaudo L. Salmeń (1996) ArticleTitleAssociation of water to polar groups: estimations by an adsorption model for lingo-cellulosic materials Colloid Surf. A: Physicochem. Eng. Aspects 112 117–129

    Google Scholar 

  • B. Blicharska M. Kluza (1996) ArticleTitleNMR relaxation in cellulose pulp Colloid. Surf. A: Physicochem. Eng. Aspects 115 137–140

    Google Scholar 

  • H. Block J.P. Kelly (1988) ArticleTitleElectro-rheology J. Phys. D: Appl. Phys. 21 1661–1677 Occurrence Handle1:CAS:528:DyaL1MXos1Wrtg%3D%3D

    CAS  Google Scholar 

  • C. Boissy P. Atten J.N. Foulc (1995) On the role of conductivities and frequency in the electrorheological effect W.A. Bullough (Eds) Proceedings of the 5th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and Associated Technology World Scientific SheffieldUK 756–763

    Google Scholar 

  • D. Capitani M.C. Emanuele J. Bella A.L. Segre D. Attanasio B. Focher G. Capretti (1999) ArticleTitle 1H NMR relaxation study of cellulose and water interaction in paper Tappi J. 82 117–124

    Google Scholar 

  • D. Capitani A.L. Segre D. Attanasio B. Blicharska B. Focher G. Capretti (1996) ArticleTitle 1H NMR relaxation study of paper as a system of cellulose and water Tappi J. 79 113–122

    Google Scholar 

  • Y. Chen H. Conrad (1993) Effects of water content on the electrorheology of corn starch/corn oil dispersions D. Siginer W. Van Arsdale M. Altan A. Alexandrou (Eds) Developments in Non-Newtonian Flows, Vol. 175 ASME New York 199–208

    Google Scholar 

  • U.S. Choi H. Conrad (1998) ArticleTitleElectrorheology of chitin and chitosan suspensions: conductivity vs. molecular structure Rheol. Fluid Mech. Nonlinear Mater. MD 81 145–151

    Google Scholar 

  • H. Conrad Y. Li Y. Chen (1995) ArticleTitleThe temperature dependence of the electrorheology and related electrical properties of corn starch/corn oil suspensions J. Rheol. 39 1041–1057

    Google Scholar 

  • H. Conrad A.F. Sprecher (1991) ArticleTitleCharacteristics and mechanisms of electrorheological fluids J. Stat. Phys. 64 1073–1091

    Google Scholar 

  • C. Czihak M. Muller H. Schober L. Heux G. Vogl (1999) ArticleTitleDynamics of water adsorbed to cellulose Physica B 266 87–91

    Google Scholar 

  • L.C. Davis (1992) ArticleTitlePolarization forces and conductivity effects in electrorheological fluids J. Appl. Phys. 72 1334–1340 Occurrence Handle1:CAS:528:DyaK38XlsFOqu7Y%3D

    CAS  Google Scholar 

  • Y.F. Deynega K.K. Popko N.Y. Kovganich (1978) ArticleTitleTemperature dependence of the electroviscous effect and dielectric parameters of suspensions of hydrated substances in hydrocarbons Heat Transfer-Soviet Res. 10 50–56

    Google Scholar 

  • J.-N. Foulc P. Atten N. Felici (1994) ArticleTitleMacroscopic model of interaction between particles in an electrorheological fluid J. Electrostat. 33 103–112

    Google Scholar 

  • M.F. Froix R. Nelson (1975) ArticleTitleThe interaction of water with cellulose from nuclear magnetic resonance relaxation times Macromolecules 8 726–730 Occurrence Handle1:CAS:528:DyaE2MXmtVOktrY%3D

    CAS  Google Scholar 

  • T. Hao A. Kawai F. Ikazaki (1998) ArticleTitleMechanism of the electrorheological effect: evidence from the conductivedielectric, and surface characteristics of water-free electrorheological fluids Langmuir 14 1256–1262

    Google Scholar 

  • D.L. Hartsock R.F. Novak G.J. Chaundy (1991) ArticleTitleER fluid requirements for automotive devices J. Rheol. 35 1305–1326

    Google Scholar 

  • T. Hatakeyama Y. Ikeda H. Hatakeyama (1987) ArticleTitleEffect of bound water on structural change of regenerated cellulose Makromol. Chem. 188 1875–1884 Occurrence Handle1:CAS:528:DyaL2sXltFKrtr0%3D

    CAS  Google Scholar 

  • K.O. Havelka J.W. Pialet (1996) ArticleTitleElectrorheological technology: the future is now Chemtech 26 36–45

    Google Scholar 

  • D.L. Klass T.W. Martinek (1967a) ArticleTitleElectroviscous fluids. I. rheological properties J. Appl. Phys. 38 67–74 Occurrence Handle1:CAS:528:DyaF2sXmvFyqsw%3D%3D

    CAS  Google Scholar 

  • D.L. Klass T.W. Martinek (1967b) ArticleTitleElectroviscous fluids. II. electrical properties J. Appl. Phys. 38 75–80 Occurrence Handle1:CAS:528:DyaF2sXmvFyqsA%3D%3D

    CAS  Google Scholar 

  • D.J. Klingenberg C.F. Zukoski (1990) ArticleTitleStudies on the steady-shear behavior of electrorheological suspensions Langmuir 6 15–25 Occurrence Handle1:CAS:528:DyaK3cXmtlCgug%3D%3D

    CAS  Google Scholar 

  • Y. Nakai E. Fukuoka S. Nakajima J. Hasegawa (1977) ArticleTitleCrystallinity and physical characteristics of microcrystalline cellulose J. Chem. Pharm. Bull. 25 96–101 Occurrence Handle1:CAS:528:DyaE2sXht1Oiu7s%3D

    CAS  Google Scholar 

  • K. Nakamura T. Hatakeyama H. Hatakeyama (1981) ArticleTitleStudies on bound water of cellulose by differential scanning calorimetry Text. Res. J. 57 607–613 Occurrence Handle10.1177/004051758105100909

    Article  Google Scholar 

  • J. Ono H. Yamada S. Matsuda K. Okajima T. Kawamoto H. Iijima (1998) ArticleTitle 1H-NMR relaxation of water molecules in the aqueous microcrystalline cellulose suspension systems and their viscosity Cellulose 5 231–247

    Google Scholar 

  • A.M. Plonka (1982) ArticleTitleCharacteristics of microcrystalline and microfine celluloses Cell. Chem. Technol. 16 473–483 Occurrence Handle1:CAS:528:DyaL3sXhvVaktg%3D%3D

    CAS  Google Scholar 

  • Z.P. Shulman R.G. Gorodkin E.V. Korobko V.K. Gleb (1981) ArticleTitleThe electrorheological effect and its possible uses J. Non-Newton. Fluid Mech. 8 29–41

    Google Scholar 

  • J. Sottys Z. Lisowski J. Knapczyk (1984) ArticleTitleX-ray diffraction study of the crystallinity index and the structure of the microcrystalline cellulose Acta Pharm. Technol. 30 174–180 Occurrence Handle1:CAS:528:DyaL2cXlvFyjs74%3D

    CAS  Google Scholar 

  • J.E. Stangroom (1983) ArticleTitleElectrorheological fluids Phys. Technol. 14 290–296 Occurrence Handle1:CAS:528:DyaL2cXktVSnug%3D%3D

    CAS  Google Scholar 

  • A.J. Stipanovic J.P. Schoonmaker (1995) The impact of crystalline phase morphology on the water-promoted electrorheological effect of polysaccharides K.O. Havelka F.E. Filisko (Eds) Progress in Electrorheology Plenum Press New York 195–205

    Google Scholar 

  • X. Tang C. Wu H. Conrad (1995) ArticleTitleOn the conductivity model for the electrorheological effect J. Rheol. 39 1059–1073

    Google Scholar 

  • H. Uejima (1972) ArticleTitleDielectric mechanism and rheological properties of electro-fluids Jpn. J. Appl. Phys. 11 319–326 Occurrence Handle1:CAS:528:DyaE38XhtFOrsLg%3D

    CAS  Google Scholar 

  • E. Vittadini L.C. Dickinson P. Chinachoti (2001) ArticleTitle 1H and 2H NMR mobility in cellulose Carbohydr. Polym. 46 49–57

    Google Scholar 

  • V.I. Volkov S.A. Korotchkova I.A. Nesterov H. Ohya Q. Guo J. Huang J. Chen (1996) ArticleTitleThe self-diffusion of water and ethanol in cellulose derivative membranes and particles with the pulsed field gradient NMR data J. Membr. Sci. 110 1–11

    Google Scholar 

  • W. Wen H. Ma W.Y. Tam P. Sheng (1997) ArticleTitleFrequency and water content dependencies of electrorheological properties Phys. Rev. E 55 R1294–R1297

    Google Scholar 

  • Winslow W.M. 1947. U.S. Patent 2,417,850.

  • W.M. Winslow (1949) ArticleTitleInduced fibrillation of suspensions J. Appl. Phys. 20 1137–1140 Occurrence Handle1:CAS:528:DyaG3cXpt1Om

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. Stipanovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Winter, W.T. & Stipanovic, A.J. Water-activated cellulose-based electrorheological fluids. Cellulose 12, 135–144 (2005). https://doi.org/10.1007/s10570-004-0345-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-004-0345-2

Keywords

Navigation