Skip to main content

Advertisement

Log in

Secular resonances between bodies on close orbits II: prograde and retrograde orbits for irregular satellites

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In extending the analysis of the four secular resonances between close orbits in Li and Christou (Celest Mech Dyn Astron 125:133–160, 2016) (Paper I), we generalise the semianalytical model so that it applies to both prograde and retrograde orbits with a one-to-one map between the resonances in the two regimes. We propose the general form of the critical angle to be a linear combination of apsidal and nodal differences between the two orbits \( b_1 \Delta \varpi + b_2 \Delta \varOmega \), forming a collection of secular resonances in which the ones studied in Paper I are among the strongest. Test of the model in the orbital vicinity of massive satellites with physical and orbital parameters similar to those of the irregular satellites Himalia at Jupiter and Phoebe at Saturn shows that \({>}20\) and \({>}40\%\) of phase space is affected by these resonances, respectively. The survivability of the resonances is confirmed using numerical integration of the full Newtonian equations of motion. We observe that the lowest order resonances with \(b_1+|b_2|\le 3\) persist, while even higher-order resonances, up to \(b_1+|b_2|\ge 7\), survive. Depending on the mass, between 10 and 60% of the integrated test particles are captured in these secular resonances, in agreement with the phase space analysis in the semianalytical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The particular Kozai Hamiltonian used in Paper I included expansion in inclination; see Eq. (12) of that paper.

  2. The semianalytical model is unable to reproduce this particular resonance; see Paper I.

References

  • Beaugé, C., Nesvorný, D.: Proper elements and secular resonances for irregular satellites. Astrophys. J. 133, 2537–2558 (2007)

    ADS  Google Scholar 

  • Brouwer, D., Clemence, G.M.: Methods of Celestial Mechanics. Academic Press, New York (1961)

    MATH  Google Scholar 

  • Carruba, V., Burns, J.A., Nicholson, P.D., Gladman, B.J.: On the inclination distribution of the jovian irregular satellites. Icarus 158, 434–449 (2002)

    Article  ADS  Google Scholar 

  • Carruba, V., Burns, J.A., Bottke, W., Nesvorný, D.: Orbital evolution of the Gefion and Adeona asteroid families: close encounters with massive asteroids and the Yarkovsky effect. Icarus 162, 308–327 (2003)

    Article  ADS  Google Scholar 

  • Carruba, V., Michtchenko, T.A., Roig, F., Ferraz-Mello, S., Nesvorný, D.: On the V-type asteroids outside the Vesta family. Astron. Astrophys. 441, 819–829 (2005)

    Article  ADS  MATH  Google Scholar 

  • Carruba, V.: The (not so) peculiar case of the Padua family. Mon. Not. R. Astron. Soc. 395, 358–377 (2009)

    Article  ADS  Google Scholar 

  • Carruba, V., Nesvorný, D., Marchi, S., Aljbaae, S.: Footprints of a possible Ceres asteroid paleo-family. Mon. Not. R. Astron. Soc. 458, 1117–1126 (2016)

    Article  ADS  Google Scholar 

  • Chambers, J.E.: A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999)

    Article  ADS  Google Scholar 

  • Chen, Y.-Y., Liu, H.-G., Zhao, G., Zhou, J.-L.: Mechanism for exciting planetary inclination and eccentricity through a residual gas disk. Astrophys. J. 769, 26 (2013)

    Article  ADS  Google Scholar 

  • Christou, A.A.: Gravitational scattering within the Himalia group of jovian prograde irregular satellites. Icarus 174, 215–229 (2005)

    Article  ADS  Google Scholar 

  • Delisle, J.B., Laskar, J.: Chaotic diffusion of the Vesta family induced by close encounters with massive asteroids. Astron. Astrophys. 540, A118 (2012)

    Article  Google Scholar 

  • Fabrycky, D.C., Lissauer, J.J., Ragozzine, D., Rowe, J.F., Steffen, J.H., Agol, E., et al.: Architecture of Kepler’s multi-transiting systems. ii. new investigations with twice as many candidates. Astrophys. J. 790, 146 (2014)

    Article  ADS  Google Scholar 

  • Frouard, J., Fouchard, M., Vienne, A.: About the dynamics of the evection resonance. Astron. Astrophys. 515, A54 (2010)

    Article  ADS  MATH  Google Scholar 

  • Gallardo, T.: Atlas of the mean motion resonances in the solar system. Icarus 184, 29–38 (2006)

    Article  ADS  Google Scholar 

  • Gayon, J., Bois, E.: Are retrograde resonances possible in multi-planet systems? Astron. Astrophys. 482, 665–672 (2008)

    Article  ADS  MATH  Google Scholar 

  • Gayon, J., Bois, E., Scholl, H.: Dynamics of planets in retrograde mean motion resonance. Celest. Mech. Dyn. Astron. 103, 267–279 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gladman, B., Kavelaars, J.J., Holman, M., Nicholson, P.D., Burns, J.A., Hergenrother, C.W., et al.: Discovery of 12 satellites of Saturn exhibiting orbital clustering. Nature 412, 163–166 (2001)

    Article  ADS  Google Scholar 

  • Greenberg, R.: Commensurabilities of satellites? Apsidal precession periods. Mon. Not. R. Astron. Soc. 170, 295–303 (1975)

    Article  ADS  MATH  Google Scholar 

  • Hahn, J.M., Malhotra, R.: Neptune’s migration into a stirred-up Kuiper Belt: a detailed comparison of simulations to observations. Astron. J. 130, 2392–2414 (2005)

    Article  ADS  Google Scholar 

  • Hénon, M., Petit, J.M.: Series expansions for encounter-type solutions of Hill’s problem. Celest. Mech. 38, 67–100 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Innanen, K.A., Zheng, J.Q., Mikkola, S., Valtonen, M.J.: The Kozai mechanism and the stability of planetary orbits in binary star systems. Astron. J. 113, 1915–1919 (1997)

    Article  ADS  Google Scholar 

  • Kessler, D.J.: Derivation of the collision probability between orbiting objects: the lifetimes of Jupiter’s outer moons. Icarus 48, 39–48 (1981)

    Article  ADS  Google Scholar 

  • Kozai, Y.: Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  • Li, D., Christou, A.A.: Secular resonances between bodies on close orbits: a case study of the Himalia prograde group of jovian irregular satellites. Celest. Mech. Dyn. Astron. 125, 133–160 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Lidov, M.: The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 9, 719–759 (1962)

    Article  ADS  Google Scholar 

  • Luciani, J.F., Namouni, F., Pellat, R.: The kinetics of systems of planetesimals. Astrophys. J. 439, 800–813 (1995)

    Article  ADS  Google Scholar 

  • Malhotra, R.: The phase space structure near Neptune resonances in the Kuiper belt. Astron. J. 111, 504–516 (1996)

    Article  ADS  Google Scholar 

  • Michel, P., Benz, W., Tanga, P., Richardson, D.C.: Collisions and gravitational reaccumulation: forming asteroid families and satellites. Science 294, 1696–700 (2001)

    Article  ADS  Google Scholar 

  • Michel, P., Benz, W., Richardson, D.C.: Catastrophic disruption of asteroids and family formation: a review of numerical simulations including both fragmentation and gravitational reaccumulations. Planet. Space Sci. 52, 1109–1117 (2004)

    Article  ADS  Google Scholar 

  • Milani, A., Knežević, Z.: Secular perturbation theory and computation of asteroid proper elements. Celest. Mech. Dyn. Astron. 49, 347–411 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Milani, A.: Asteroid proper elements and the dynamical structure of the asteroid main belt. Icarus 107, 219–254 (1994)

    Article  ADS  Google Scholar 

  • Morais, M.H.M., Giuppone, C.A.: Stability of prograde and retrograde planets in circular binary systems. Mon. Not. R. Astron. Soc. 424, 52–64 (2012)

    Article  ADS  Google Scholar 

  • Morais, M.H.M., Namouni, F.: Asteroids in retrograde resonance with Jupiter and Saturn. Mon. Not. R. Astron. Soc. Lett. 436, L30–L34 (2013a)

    Article  ADS  Google Scholar 

  • Morais, M.H.M., Namouni, F.: Retrograde resonance in the planar three-body problem. Celest. Mech. Dyn. Astron. 117, 405–421 (2013b)

    Article  ADS  MathSciNet  Google Scholar 

  • Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Namouni, F.: Secular interactions of coorbiting objects. Icarus 314, 293–314 (1999)

    Article  ADS  Google Scholar 

  • Naoz, S., Farr, W.M., Lithwick, Y., Rasio, F.A., Teyssandier, J.: Secular dynamics in hierarchical three-body systems. Mon. Not. R. Astron. Soc. 431, 2155–2171 (2013)

    Article  ADS  Google Scholar 

  • Nesvorný, D., Morbidelli, A.: An analytic model of three-body mean motion resonances. Celest. Mech. Dyn. Astron. 71, 243–271 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • Nesvorný, D., Morbidelli, A., Vokrouhlický, D., Bottke, W., Brož, M.: The Flora family: a case of the dynamically dispersed collisional swarm? Icarus 157, 155–172 (2002)

    Article  ADS  Google Scholar 

  • Nesvorný, D., Alvarellos, J.L.A., Dones, L., Levison, H.F.: Orbital and collisional evolution of the irregular satellites. Astron. J. 126, 398–429 (2003)

    Article  ADS  Google Scholar 

  • Novaković, B., Maurel, C., Tsirvoulis, G., Knežević, Z.: Asteroid secular dynamics: Ceres? Fingerprint identified. Astrophys. J. 807, L5 (2015)

    Article  ADS  Google Scholar 

  • Saha, P., Tremaine, S.: The orbits of the retrograde Jovian satellites. Icarus 106, 549–562 (1993)

    Article  ADS  Google Scholar 

  • Touma, J., Wisdom, J.: Resonances in the early evolution of the Earth–Moon System. Astron. J. 115, 1653–1663 (1998)

    Article  ADS  Google Scholar 

  • Tsirvoulis, G., Novaković, B.: Secular resonances with Ceres and Vesta. Icarus 280, 300–307 (2016)

    Article  ADS  Google Scholar 

  • Valtonen, M., Karttunen, H.: The Three-Body Problem. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  • Whipple, A., Shelus, P.J.: A secular resonance between Jupiter and its eighth satellite? Icarus 101, 265–271 (1993)

    Article  ADS  Google Scholar 

  • Wisdom, J.: The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem. Astron. J. 85, 1122–1133 (1980)

    Article  ADS  Google Scholar 

  • Yokoyama, T., Vieira Neto, E., Winter, O.C., Sanchez, D.M., Brasil, P.I.D.O.: On the evection resonance and its connection to the stability of outer satellites. Math. Probl. Eng. 2008, 1–16 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the constructive comments from two anonymous referees, increasing the quality of the paper. We wish to acknowledge the SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support. Astronomical research at the Armagh Observatory is funded by the Northern Ireland Department for Communities (DfC). Figure 13 is produced using LibreOffice Draw and Inkscape; all the other figures are generated with gnuplot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daohai Li.

Appendix: Relation of orbital elements in the original and flipped frame

Appendix: Relation of orbital elements in the original and flipped frame

We derive the relation of the orbital elements in the two reference systems (1). Figure 13 shows the illustration of the frames and the quantities used in the derivation. As described, each of the frames can be transformed to the other by rotating it along the x-axis for \(\pi \). We base the derivation on vector transformation in the two frames.

Fig. 13
figure 13

Two reference frames: left: the “original” fame in which \(i_\odot =0\); right: the “flipped” frame where \(i_\odot '=\pi \) and where we can use the coorbital theory. The planet is at the origin of both frames. The outer dotted parallelogram is the orbital plane of the Sun (with respect to the planet), and the big solid ellipse is the orbit of the Sun; the smaller inner inclined one is the orbit of a retrograde satellite; the arrows mark the direction of Solar and satellite’s orbital revolution. \({\mathbf {r}}\), \({\mathbf {v}}\), \({\mathbf {h}}\) and \({\hat{\varOmega }}\) are the vectors of position, velocity, angular momentum and the unit vector representing the direction of ascending node in the two frames

Suppose \({\mathbf {P}}\) is an arbitrary vector and it is \([P_x, P_y, P_z]^\intercal \) in the original frame. Then in the flipped frame, it becomes

$$\begin{aligned} {\mathbf {P}}'=\left[ \begin{array}{c} P'_x\\ P'_y\\ P'_z\end{array}\right] ={\mathbf {R}}^{x}_\pi {\mathbf {P}}=\left[ \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 0 &{} -1&{} 0 \\ 0 &{} 0 &{} -1 \end{array} \right] \left[ \begin{array}{c} P_x\\ P_y\\ P_z \end{array}\right] =\left[ \begin{array}{c} P_x\\ -P_y\\ -P_z\end{array}\right] , \end{aligned}$$
(8)

where \({\mathbf {R}}^{x}_\pi \) is the rotational matrix, meaning rotating the vector along x-axis for \(\pi \); note that \({{\mathbf {R}}^{x}_\pi }^{-1}={\mathbf {R}}^{x}_\pi \).

First, we consider the position vector \({\mathbf {r}}\), the velocity vector \({\mathbf {v}}\) and the angular momentum vector \({\mathbf {h}}\). The notations without prime correspond to the original frame and primed ones relate to the flipped frame. Since the transition to the flipped frame is only a rotation, the length of the vectors remains conserved. Thus, Eqs. (2.134) and (2.135) of Murray and Dermott (1999) directly tell \(a'=a\) and \(e'=e\). According to the definition, the inclination \(i'=\arccos (h_z'/\sqrt{h_x'^2+h_y'^2+h_z'^2}) =\arccos (-h_z/\sqrt{h_x^2+h_y^2+h_z^2})=\pi -i\).

The vector representing the direction of ascending node \({\hat{\varOmega }}\) is frame specific, and we show the calculation of it. Since \({\hat{\varOmega }}\) is in the orbital plane as well as in the \(x-y\) plane, we have \({\hat{\varOmega }} \perp {\mathbf {h}}\) and \({\hat{\varOmega }} \perp {\hat{z}}\) (\({\hat{z}} \) is the unit vertical vector). From the definition of ascending node, we know \({\hat{\varOmega }} ={\hat{z}} \times {\mathbf {h}}=[- h_y, h_x,0]^\intercal \). Thus, \({\hat{\varOmega }}' ={\hat{z}}' \times {\mathbf {h}}'=(- h_y', h_x',0)^\intercal =[ h_y, h_x,0]^\intercal \). Since \(\varOmega \) is measured from x-axis, \(\sin \varOmega =h_x/\sqrt{h_x^2+h_y^2}\) and \(\cos \varOmega =-h_y/\sqrt{h_x^2+h_y^2}\). Thus,

$$\begin{aligned} \begin{aligned} \sin \varOmega '= & {} h_x'\big /\sqrt{h_x'^2+h_y'^2}= & {} h_x\big /\sqrt{h_x^2+h_y^2}= & {} \sin \varOmega \,\,\\ \cos \varOmega '= & {} -h_y'\big /\sqrt{h_x'^2+h_y'^2}= & {} h_y\big /\sqrt{h_x^2+h_y^2}= & {} -\cos \varOmega . \end{aligned} \end{aligned}$$
(9)

Hence, \(\varOmega '=\pi -\varOmega \). Following Eq. (2.139) of Murray and Dermott (1999), f is a function of a, e, h (length of \({\mathbf {h}}\)), r (length of \({\mathbf {r}}\)) and \(\dot{r}\), all remaining the same in the flipped frame, implying \(f'=f\). Combining Eq. (2.138) with Eq. (8), we have \(\sin (\omega '+f')=-\sin (\omega +f)\) and \(\cos (\omega '+f')=-\cos (\omega +f)\). Hence, \(\omega '+f'=\omega +f+\pi \) and \(\omega '=\omega +\pi \).

Now we have constructed the relation between the orbital elements in the two frames (1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Christou, A.A. Secular resonances between bodies on close orbits II: prograde and retrograde orbits for irregular satellites. Celest Mech Dyn Astr 129, 1–23 (2017). https://doi.org/10.1007/s10569-017-9763-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-017-9763-y

Keywords

Navigation