Skip to main content
Log in

Broad search for unstable resonant orbits in the planar circular restricted three-body problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Unstable resonant orbits in the circular restricted three-body problem have increasingly been used for trajectory design using optimization and invariant manifold techniques. In this study, several methods for computing these unstable resonant orbits are explored including grid searches, flyby maps, and continuation. Families of orbits are computed focusing on orbits with multiple loops near the secondary in the Jupiter–Europa system, and their characteristics are explored. Different parameters such as period and stability are examined for each set of resonant orbits, and the continuation of several specific orbits is explored in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Anderson, R.L.: Low thrust trajectory design for resonant flybys and captures using invariant manifolds. PhD thesis, University of Colorado at Boulder (2005)

  • Anderson, R.L.: Approaching Moons from resonance via invariant manifolds. In: 22nd AAS/AIAA Space Flight Mechanics Meeting, AAS 12–136. Charleston, South Carolina (2012)

  • Anderson, R.L.: Tour design using resonant orbit heteroclinic connections in patched circular restricted three-body problems. In: 23rd AAS/AIAA Space Flight Mechanics Meeting, AAS 13–493. Kauai, Hawaii (2013)

  • Anderson, R.L.: Approaching Moons from resonance via invariant manifolds. J. Guid. Control Dyn. 38(6), 1097–1109 (2015)

    Article  ADS  Google Scholar 

  • Anderson, R.L., Lo, M.W.: The role of invariant manifolds in low thrust trajectory design (Part II). In: AIAA/AAS Astrodynamics Specialist Conference, Paper AIAA 2004–5305. Providence, Rhode Island (2004)

  • Anderson, R.L., Lo, M.W.: Role of invariant manifolds in low-thrust trajectory design. J. Guid. Control Dyn. 32(6), 1921–1930 (2009)

    Article  ADS  Google Scholar 

  • Anderson, R.L., Lo, M.W.: Dynamical systems analysis of planetary flybys and approach: planar Europa orbiter. J. Guid. Control Dyn. 33(6), 1899–1912 (2010)

    Article  ADS  Google Scholar 

  • Anderson, R.L., Lo, M.W.: A dynamical systems analysis of planetary flybys and approach: ballistic case. J. Astronaut. Sci. 58(2), 167–194 (2011a)

    Article  ADS  Google Scholar 

  • Anderson, R.L., Lo, M.W.: Flyby design using heteroclinic and homoclinic connections of unstable resonant orbits. In: Jah, M.K., Guo, Y., Bowes, A.L., Lai, P.C. (eds.) Spaceflight Mechanics: Proceedings of the 21st AAS/AIAA Space Flight Mechanics Meeting held February 13–17, 2011, New Orleans, Louisiana, pp. 321–340. American Astronautical Society, Univelt Inc., San Diego, CA (2011b)

  • Anderson, R.L., Lo, M.W.: Spatial approaches to moons from resonance relative to invariant manifolds. In: 63rd International Astronautical Congress, IAC-12.C1.7.4. International Astronautical Federation, Naples, Italy (2012)

  • Anderson, R.L., Campagnola, S., Lantoine, G.: Broad search for unstable resonant orbits in the planar circular restricted three-body problem. In: AAS/AAIA Astrodynamics Specialist Conference, AAS 13–787. Hilton Head Island, South Carolina (2013)

  • Barrabés, E., Gómez, G.: Spatial p-q resonant orbits of the RTBP. Celest. Mech. Dyn. Astron. 84, 387–407 (2002)

    Article  ADS  MATH  Google Scholar 

  • Barrabés, E., Gómez, G.: Three-dimensional p-q resonant orbits close to second species solution. Celest. Mech. Dyn. Astron. 85, 145–174 (2003)

    Article  ADS  MATH  Google Scholar 

  • Barrabés, E., Gómez, G.: A note on second species solutions generated from p-q resonant orbits. Celest. Mech. Dyn. Astron. 88, 229–244 (2004)

    Article  ADS  MATH  Google Scholar 

  • Bollt, E., Meiss, J.D.: Targeting chaotic orbits to the Moon through recurrence. Phys. Lett. A 204, 373–378 (1995)

    Article  ADS  Google Scholar 

  • Bolotin, S., MacKay, R.S.: Nonplanar second species periodic and chaotic trajectories for the circular restricted three-body problem. Celest. Mech. Dyn. Astron. 94, 433–449 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bolotin, S.V., MacKay, R.S.: Periodic and chaotic trajectories of the second species for the n-centre problem. Celest. Mech. Dyn. Astron. 77, 49–75 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Boutonnet, A., Schoenmaekers, J.: Mission analysis for the JUICE mission. In: McAdams, J.V., McKinley, D.P., Berry, M.M., Jenkins, K.L. (eds.) Space Flight Mechanics: Proceedings of the AAS/AIAA 22nd Space Flight Mechanics Meeting held January 29-February 2, 2012 in Charleston, South Carolina, pp 1561–1578. American Astronautical Society, Univelt Inc., San Diego, CA (2012)

  • Broucke, R.A.: Periodic orbits in the restricted three-body problem with Earth--Moon masses. Technical Report 32–1168, Jet Propulsion Laboratory (1968)

  • Broucke, R.A.: Periodic orbits in the elliptic restricted three-body problem. Tech. Rep. 32–1360, Jet Propulsion Laboratory (1969)

  • Bruno, A.D.: On periodic flybys of the Moon. Celest. Mech. 24, 255–268 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bruno, A.D.: The Restricted 3-Body Problem. Walter de Gruyter & Co., Berlin (1994)

    Google Scholar 

  • Bruno, A.D., Varin, V.P.: On families of periodic solutions of the restricted three-body problem. Celest. Mech. Dyn. Astron. 95(1–4), 27–54 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bruno, A.D., Varin, V.P.: Periodic solutions of the restricted three-body problem for a small mass ratio. J. Appl. Math. Mech. 71, 933–960 (2007)

    Article  MathSciNet  Google Scholar 

  • Bruno, A.D., Varin, V.P.: Closed families of periodic solutions of a restricted three-body problem. Astron. Vestn. 43(3), 265–288 (2009a)

    Google Scholar 

  • Bruno, A.D., Varin, V.P.: Family \(h\) of periodic solutions of the restricted problem for small \(\mu \). Astron. Vestn. 43(1), 4–27 (2009b)

    Google Scholar 

  • Campagnola, S., Russell, R.: Endgame problem part 1: V-infinity-leveraging technique and the leveraging graph. J. Guid. Control Dyn. 33(2), 463–475 (2010a)

    Article  ADS  MathSciNet  Google Scholar 

  • Campagnola, S., Russell, R.: Endgame problem part 2: multibody technique and the Tisserand-Poincaré graph. J. Guid. Control Dyn. 33(2), 476–486 (2010b)

    Article  ADS  MathSciNet  Google Scholar 

  • Campagnola, S., Skerritt, P., Russell, R.P.: Flybys in the planar, circular, restricted, three-body problem. Celest. Mech. Dyn. Astron. 113(3), 343–368 (2012). doi:10.1007/s10569-012-9427-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Campagnola, S., Boutonnet, A., Schoenmaekers, J., Grebow, D.J., Petropoulos, A.E., Russell, R.P.: Tisserand leveraging transfers. J. Guid. Control Dyn. 34(4), 1202–1210 (2014a)

  • Campagnola, S., Buffington, B.B., Petropoulos, A.E.: Jovian tour design for orbiter and lander missions to Europa. Acta Astronaut. 100, 68–81 (2014b)

  • Dena, Á., Rodríguez, M., Serrano, S., Barrio, R.: High-precision continuation of periodic orbits. Abstr. Appl. Anal. 2012, 716,024-1–716,024-12 (2012)

  • Dichmann, D.J., Doedel, E.J., Paffenroth, R.C.: The computation of periodic solutions of the 3-body problem using the numerical continuation software AUTO. In: International Conference on Libration Point Orbits and Applications. Aiguablava, Spain (2002)

  • Doedel, E.J., Oldeman, B.E.: AUTO-07p: continuation and bifurcation software for ordinary differential equations. Concordia University, Montreal, Canada, Tech. rep (2009)

    Google Scholar 

  • Font, J., Nunes, A., Simó, C.: Consecutive quasi-collisions in the planar circular RTBP. Nonlinearity 15, 115–142 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Font, J., Nunes, A., Simó, C.: A numerical study of the orbits of second species of the planar circular RTBP. Celest. Mech. Dyn. Astron. 103, 143–162 (2009)

    Article  ADS  MATH  Google Scholar 

  • Hénon, M.: Generating Families in the Restricted Three-Body Problem. Lecture Notes in Physics, vol. 52. Springer, New York (1997)

    Google Scholar 

  • Hénon, M.: Generating Families in the Restricted Three-Body Problem II. Quantitative Study of Bifurcations, Lecture Notes in Physics, vol. 65. Springer, New York (2001)

  • Howell, K.C., Breakwell, J.V.: Three-dimensional, periodic, ‘halo’ orbits. Celest. Mech. 32(1), 53–71 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Howell, K.C., Marchand, B., Lo, M.W.: Temporary satellite capture of short-period Jupiter family comets from the perspective of dynamical systems. J. Astronaut. Sci. 49(4), 539–557 (2001)

    MathSciNet  Google Scholar 

  • Johannesen, J.R., D’Amario, L.A.: Europa orbiter mission trajectory design. In: Howell, K.C., Hoots, F.R., Kaufman, B., Alfriend, K.T. (eds.) Astrodynamics: Proceedings of the AAS/AIAA Astrodynamics Conference, August 16–19, 1999, Girdwood, Alaska, pp. 895–908. American Astronautical Society, Univelt Inc., San Diego, CA (1999)

  • Keller, H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Rabinowitz, P.H. (ed.) Applications of Bifurcation Theory, pp. 359–384. Academic Press Inc, New York (1977)

    Google Scholar 

  • Keller, H.B.: Lectures on Numerical Methods in Bifurcation Problems. Springer, New York (1986)

    Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Resonance and capture of Jupiter comets. Celest. Mech. Dyn. Astron. 81(1–2), 27–38 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lantoine, G., Russell, R.P., Campagnola, S.: Optimization of low-energy resonant hopping transfers between planetary moons. In: 60th International Astronautical Congress, IAC-09.C1.1.1. Deajeon, Korea (2010)

  • Lantoine, G., Russell, R.P., Campagnola, S.: Optimization of low-energy resonant hopping transfers between planetary moons. Acta Astronaut. 68(7–8), 1361–1378 (2011)

    Article  ADS  Google Scholar 

  • Lo, M.W., Parker, J.S.: Unstable resonant orbits near Earth and their applications in planetary missions. In: AIAA/AAS Astrodynamics Specialist Conference, Paper AIAA 2004–5304. Providence, Rhode Island (2004)

  • Miele, A.: Theorem of image trajectories in the Earth–Moon space. Astronaut. Acta 6(51), 225–232 (1960)

    Google Scholar 

  • Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Parker, J.S., Anderson, R.L.: Low-Energy Lunar Trajectory Design, Volume 12 of JPL Deep Space Communications and Navigation Series, 1st edn. Wiley, Hoboken, NJ (2014)

  • Parker, T., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, New York (1989)

    Book  MATH  Google Scholar 

  • Perko, L.M.: Second species periodic solutions with an O(\(\mu \)) near-Moon passage. Celest. Mech. 14(4), 395–427 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Perko, L.M.: Second species solution with an \(\text{ O }(\mu ^{\nu }), 1/3 < \nu <1\), near-Moon passage. Celestial Mechanics 16(3), 275–290 (1977)

  • Perko, L.M.: Second species solutions with an \(\text{ O }(\mu ^{\nu }), 0 < \nu < 1\), near-Moon passage. Celest. Mech. 24(2), 155–171 (1981)

  • Poincaré, H.: Les Méthodes Nouvelles de la Mécanique Céleste. Gauthier-Villars et fils, Paris (1892)

    Google Scholar 

  • Ross, S.D., Scheeres, D.J.: Multiple gravity assists, capture, and escape in the restricted three-body problem. SIAM J. Appl. Dyn. Syst. 6(3), 576–596 (2007). doi:10.1137/060663374

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Roy, A.E., Ovenden, M.W.: On the occurrence of commensurable mean motions in the solar system: the mirror theorem. Mon. Not. R. Astron. Soc. 115(3), 296–309 (1955)

    Article  ADS  MATH  Google Scholar 

  • Russell, R.P.: Global search for planar and three-dimensional periodic orbits near Europa. In: AAS/AIAA Astrodynamics Specialist Conference, Paper AAS 2005–290. Lake Tahoe, CA (2005)

  • Schroer, C.G., Ott, E.: Targeting in Hamiltonian systems that have mixed regular/chaotic phase spaces. Chaos 7(4), 512–519 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sims, J.A., Longuski, J.M.: Analysis of \(\text{ V }_{\infty }\) leveraging for interplanetary missions. In: AIAA/AAS Astrodynamics Conference, AIAA-1994-3769. Scottsdale, Arizona (1994)

  • Strömgren, E.: Connaisance actuelle des orbites dans le problème des trois corps. Bull. Astron. 9, 87–130 (1933)

    ADS  Google Scholar 

  • Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    Google Scholar 

  • Uphoff, C., Roberts, P.H., Friedman, L.D.: Orbit design concepts for Jupiter orbiter missions. J. Spacecr. Rockets 13(6), 348–355 (1976). doi:10.2514/3.57096

    Article  ADS  Google Scholar 

  • Vaquero, M., Howell, K.: Leveraging resonant orbit manifolds to design transfers between libration point orbits in multi-body regimes. In: 23rd AAS/AIAA Space Flight Mechanics Meeting, AAS 13–334. Kauai, Hawaii (2013)

  • Vaquero, M., Howell, K.C.: Poincaré maps and resonant orbits in the circular restricted three-body problem. In: Schaub, H., Gunter, B.C., Russell, R.P., Cerven, W.T. (eds.) Astrodynamics: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference held July 31 to August 4, 2011, in Girdwood, Alaska, pp. 433–451. American Astronautical Society, Univelt Inc., San Diego, California (2011)

  • Vaquero, M., Howell, K.C.: Design of transfer trajectories between resonant orbits in the restricted three-body problem with application to the Earth--Moon system. In: 1st IAA/AAS Conference on the Dynamics and Control of Space Systems. Porto, Portugal (2012)

  • Vaquero Escribano, T.M.: Poincaré sections and resonant orbits in the restricted three-body problem. Master’s thesis, Purdue University, West Lafayette, Indiana (2010)

  • Whiffen, G.J.: Mystic: Implementation of the static dynamic optimal control algorithm for high fidelity low thrust trajectory design. In: AIAA/AAS Astrodynamics Specialists Conference, AIAA-2006-6741. Keystone, Colorado (2006)

  • Whiffen, G.J., Lam, T.: The Jupiter icy moons orbiter reference trajectory. In: Vadali, S.R., Cangahuala, L.A., Schumacher Jr., P.W., Guzman, J.J. (eds) Spaceflight Mechanics: Proceedings of the 16th AAS/AIAA Space Flight Mechanics Meetings held January 22–26, 2006, Tampa, Florida, pp. 1415–1436. American Astronautical Society, Univelt Inc., San Diego, CA (2006)

  • Woolley, R.C., Scheeres, D.J.: Hyperbolic periodic orbits in the three-body problem and their application to orbital capture. In: AAS George H. Born Symposium. Boulder, Colorado (2010)

Download references

Acknowledgments

The research presented here has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Funding for this research came from AMMOS/MGSS under the “Tour and Endgame Design using Invariant Manifolds” study. The authors would like to thank Martin Lo, Jon Sims, Try Lam, and Channing Chow for their helpful comments and conversations. They would also like to thank the anonymous reviewers for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney L. Anderson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, R.L., Campagnola, S. & Lantoine, G. Broad search for unstable resonant orbits in the planar circular restricted three-body problem. Celest Mech Dyn Astr 124, 177–199 (2016). https://doi.org/10.1007/s10569-015-9659-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9659-7

Keywords

Navigation