Skip to main content
Log in

Efficient computational approaches to obtain periodic orbits in Hamiltonian systems: application to the motion of a lunar orbiter

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we study the problem of computing periodic orbits of Hamiltonian systems providing large families of such orbits. Periodic orbits constitute one of the most important invariants of a system, and this paper provides a comprehensive analysis of two efficient computational approaches for Hamiltonian systems. First, a new version of the grid search method, applied to problems with three degrees of freedom, has been considered to find, systematically, symmetric periodic orbits. To obtain non-symmetric periodic orbits, we use a modification of an optimization method based on an evolutionary strategy. Both methods require a great computational effort to find a big number of periodic orbits, and we apply parallelization tools to reduce the CPU time. Finally, we present a strategy to provide initial conditions of the periodic orbits with arbitrary precision. We apply all these algorithms to the problem of the motion of the lunar orbiter referred to the rotating reference frame of the Moon. The periodic orbits of this problem are very useful from the space engineering point of view because they provide low-cost orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://sourceforge.net/projects/tidesodes/

References

  • Abad, A., Barrio, R., Blesa, F., Rodríguez, M.: Algorithm 924: TIDES, a Taylor series integrator for differential equations. ACM Trans. Math. Softw. 39(1), 1–28 (2012)

    Article  Google Scholar 

  • Abad, A., Barrio, R., Dena, A.: Computing periodic orbits with arbitrary precision. Phys. Rev. E 84, 016701 (6) (2011)

    Article  ADS  Google Scholar 

  • Abad, A., Elipe, A.: Evolution strategies for computing periodic orbits. Math. Comput. Simul. (2014). doi:10.1016/j.matcom.2014.05.014

    Google Scholar 

  • Abad, A., Elipe, A., Tresaco, E.: Analytical model to find frozen orbits for a lunar orbiter. J. Guid. Control Dyn. 32(3), 888–898 (2009)

    Article  ADS  Google Scholar 

  • Barrio, R., Blesa, F.: Systematic search of symmetric periodic orbits in 2DOF Hamiltonian systems. Chaos Solitons Fractals 41(2), 560–582 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Beyer, H., Schwefel, H.: Evolution strategies: a comprehensive introduction. Nat. Comput. 1, 3–52 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Bray, T.A., Goudas, C.L.: Doubly symmetric orbits about the collinear Lagrangian points. Astron. J. 72, 202–213 (1967)

    Article  ADS  Google Scholar 

  • Brent, R.: An algorithm with guaranteed convergence for finding a zero of a function. Comput. J. 14(4), 422–425 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  • Brouke, R.: Stability of periodic orbits in the elliptic restricted three-body problem. AIAA J. 7(4), 1003–1009 (1969)

    Article  ADS  Google Scholar 

  • Chandra, R., Maydan, D., Kohr, D., Dagum, L.: Parallel Programming in OpenMP. Morgan Kaufmann Publishers, Los Altos (2001)

    Google Scholar 

  • Contopoulos, G., Harsoula, M.: Stickiness effects in conservative systems. Int. J. Bifurcat. Chaos 20(7), 2005–2043 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Demmel, J.W.: Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1997)

    Book  MATH  Google Scholar 

  • Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29(2), 141–164 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Doedel, E.: AUTO: a program for the automatic bifurcation analysis of autonomous systems. In: Proceedings of the Tenth Manitoba Conference on Numerical Mathematics and Computing, 1980, vol. 30, pp. 265–284. Winnipeg, Manitoba (1981)

  • Elipe, A., Lara, M.: Frozen orbits about the moon. J. Guid. Control Dyn. 26(2), 238–243 (2003)

    Article  ADS  Google Scholar 

  • Farantos, S.: POMULT: a program for computing periodic orbits in Hamiltonian systems based on multiple shooting algorithms. Comput. Phys. Commun. 108, 240–258 (1998)

    Article  MATH  ADS  Google Scholar 

  • Folte, D., Quinn, D.: Lunar frozen orbits. In: AAS/AIAA Astrodynamics Specialist Conference. Paper AIAA 06-6749 (2006)

  • Goodyear, W.H.: Completely general closed-form solution for coordinates and partial derivatives of the two-body problem. Astron. J. 70, 189–192 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  • Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems, Second revised edn. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  • Henon, M.: Exploration numerique du probleme restreint. II Masses egales, stabilite des orbites periodiques. Ann. d’Astrophys. 28, 992–1007 (1965)

    ADS  Google Scholar 

  • Henon, M.: Numerical exploration of the restricted problem. V. Hill’s Case: periodic orbits and their stability. Astron. Astrophys. 1, 223–238 (1969)

    MATH  ADS  Google Scholar 

  • Hill, G.W.: Researches in the lunar theory. Am. J. Math. 1, 5–26 (1878)

  • Im, C., Kim, J., Jung, H.: A novel algorithm for multimodal function optimization based on evolution strategy. IEEE Trans. Magn. 40(2), 1224–1227 (2004)

    Article  ADS  Google Scholar 

  • Kazantzis, P.G., Goudas, C.L.: A grid search for three-dimensional motions and three new types of such motions. Astrophys. Space Sci. 32, 95–113 (1975)

    Article  MATH  ADS  Google Scholar 

  • Krauskopf, B., Osinga, H.M., Galán-Vioque, J. (eds.): Numerical continuation methods for dynamical systems. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  • Lara, M., Palacián, J.: Hill problem analytical theory to the order four: application to the computation of frozen orbits around planetary satellites. Math. Probl. Eng. Article ID 753653 (2009)

  • Lara, M., Pelaez, J.: On the numerical continuation of periodic orbits. An intrinsic, 3-dimensional, differential, predictor-corrector algorithm. Astron. Astrophys. 389(2), 692–701 (2002)

    Article  MATH  ADS  Google Scholar 

  • Mauger, F., Chandre, C., Uzer, T.: Simulated annealing algorithm for finding periodic orbits of multi-electron atomic systems. Commun. Nonlinear Sci. Numer. Simul. 16(7), 2845–2852 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  • Markellos, V., Black, W., Moran, P.E.: A grid search for families of periodic orbits in the restricted problem of three bodies. Celest. Mech. 9, 507–512 (1974)

    Article  MATH  ADS  Google Scholar 

  • Meyer, K.R., Hall, G.R., Offin, D.: Introduction to Hamiltonian Dynamical Systems and the N-body Problem. Applied Mathematical Sciences, vol. 90, 2nd edn. Springer, New York (2009)

    Google Scholar 

  • Parsopoulos, K.E., Vrahatis, M.N.: On the computation of all global minimizers through particle swarm optimization. IEEE Trans. Evol. Comput. 8, 211–224 (2004)

    Article  Google Scholar 

  • Poincaré, H.: Les Méthodes nouvelles de la Mécanique Céleste. Gauthier-Villarset fils, Paris (1892)

    Google Scholar 

  • Polymilis, C., Servizi, G., Skokos, Ch., Turchetti, G., Vrahatis, M.N.: Topological degree theory and local analysis of area preserving maps. Chaos 13, 94–104 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Qing, L., Gang, W., Qiuping, W.: Restricted evolution based multimodal function optimization in holographic grating design. Evol. Comput. 1, 789–794 (2005)

    Google Scholar 

  • Roy, A., Ovenden, M.: On the occurrence of commensurable mean motions in the solar system: the mirror theorem. Mon. Not. R. Astron. Soc. 115(3), 296–309 (1955)

    Article  MATH  ADS  Google Scholar 

  • Russell, R.: Global search for planar and three-dimensional periodic orbits near Europa. J. Astron. Sci. 54(2), 199–226 (2006)

    Article  Google Scholar 

  • Shepperd, S.W.: Universal Keplerian state transition matrix. Celest. Mech. 35, 129–144 (1985)

    Article  MATH  ADS  Google Scholar 

  • Skokos, Ch.: On the stability of periodic orbits of high dimensional autonomous Hamiltonian system. Phys. D 159, 155–179 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Skokos, Ch., Parsopoulos, K.E., Patsis, P.A., Vrahatis, M.N.: Particle swarm optimization: an efficient method for tracing periodic orbits in three-dimensional galactic potentials. Mon. Not. R. Astron Soc. 359, 251–260 (2005)

    Article  ADS  Google Scholar 

  • Tadi, M.: On computing periodic orbits. J. Sound Vib. 283, 495–506 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Trefethen, L.N., Bau III, D.: Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1997)

    Book  MATH  Google Scholar 

  • Tsirogiannis, G., Perdios, E., Markellos, V.V.: Improved grid search method: an efficient tool for global computation of periodic orbits. Celest. Mech. Dyn. Astron. 103, 49–78 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Vrahatis, M.N.: Solving systems of nonlinear equations using the nonzero value of the topological degree. ACM Trans. Math. Softw. 14, 312–329 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Vrahatis, M.N.: Algorithm 666: CHABIS: a mathematical software package for locating and evaluating roots of systems of nonlinear equations. ACM Trans. Math. Softw. 14, 330–336 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Weilian, Y.: Frozen orbit for lunar orbiter. Adv. Astron. Sci. 117, 379–388 (2004)

    Google Scholar 

  • Wulff, C., Schebesch, A.: Numerical continuation of symmetric periodic orbits. SIAM J. Appl. Dyn. Syst. 5(3), 435–457 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

A. Dena thanks Prof. G. Lord for his hospitality during her stay at the Heriot-Watt University, Edinburgh. The work of A. Dena was carried out under the HPC-EUROPA2 project (project number: 228398) with the support of the European Commission - Capacities Area - Research Infrastructures. Besides, this work made use of the facilities of HECToR, the UK’s national high-performance computing service, which is provided by UoE HPCx Ltd at the University of Edinburgh, Cray Inc and NAG Ltd, and funded by the Office of Science and Technology through EPSRC’s High-End Computing Programme. The authors A. Abad, R. Barrio and A. Dena were partially supported by the Spanish Research project MTM2012-31883.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángeles Dena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dena, Á., Abad, A. & Barrio, R. Efficient computational approaches to obtain periodic orbits in Hamiltonian systems: application to the motion of a lunar orbiter. Celest Mech Dyn Astr 124, 51–71 (2016). https://doi.org/10.1007/s10569-015-9651-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9651-2

Keywords

Navigation