Skip to main content
Log in

Long-term dynamic modeling of tethered spacecraft using nodal position finite element method and symplectic integration

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Dynamic modeling of tethered spacecraft with the consideration of elasticity of tether is prone to the numerical instability and error accumulation over long-term numerical integration. This paper addresses the challenges by proposing a globally stable numerical approach with the nodal position finite element method (NPFEM) and the implicit, symplectic, 2-stage and 4th order Gaussian–Legendre Runge–Kutta time integration. The NPFEM eliminates the numerical error accumulation by using the position instead of displacement of tether as the state variable, while the symplectic integration enforces the energy and momentum conservation of the discretized finite element model to ensure the global stability of numerical solution. The effectiveness and robustness of the proposed approach is assessed by an elastic pendulum problem, whose dynamic response resembles that of tethered spacecraft, in comparison with the commonly used time integrators such as the classical 4th order Runge–Kutta schemes and other families of non-symplectic Runge–Kutta schemes. Numerical results show that the proposed approach is accurate and the energy of the corresponding numerical model is conservative over the long-term numerical integration. Finally, the proposed approach is applied to the dynamic modeling of deorbiting process of tethered spacecraft over a long period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aravind, P.K.: The physics of the space elevator. Am. J. Phys. 75(2), 125–130 (2007). doi:10.1119/1.2404957

    Article  ADS  Google Scholar 

  • Aristoff, J., Horwood, J., Poore, A.: Orbit and uncertainty propagation: a comparison of Gauss–Legendre-, Dormand–Prince-, and Chebyshev–Picard-based approaches. Celest. Mech. Dyn. Astron. 118(1), 13–28 (2014). doi:10.1007/s10569-013-9522-7

    Article  ADS  Google Scholar 

  • Aristoff, J., Horwood, J., Poore, A.: Implicit-Runge–Kutta-based methods for fast, precise, and scalable uncertainty propagation. Celest. Mech. Dyn. Astron. 122(2), 169–182 (2015). doi:10.1007/s10569-015-9614-7

  • Bilitza, D., McKinnell, L.-A., Reinisch, B., Fuller-Rowell, T.: The international reference ionosphere today and in the future. J. Geod. 85(12), 909–920 (2011). doi:10.1007/s00190-010-0427-x

    Article  ADS  Google Scholar 

  • Buckham, B., Driscoll, F.R., Nahon, M.: Development of a finite element cable model for use in low-tension dynamics simulation. J. Appl. Mech. 71(4), 476–485 (2004). doi:10.1115/1.1755691

    Article  MATH  ADS  Google Scholar 

  • Carpenter, J.R., Leitner, J., Folta, D., Burns, R.: Benchmark Problems for Spacecraft Formation Flying Missions. In: AIAA guidance, navigation, and control conference and exhibition, Paper No. 2003–5364, Aug. 11–14 (2003)

  • Ellis, J.R., Hall, C.D.: Model development and code verification for simulation of electrodynamic tether system. J. Guid. Control Dyn. 32(6), 1713–1722 (2009). doi:10.2514/1.44638

    Article  ADS  Google Scholar 

  • Ellis, J., Hall, C.: Out-of-plane librations of spinning tethered satellite systems. Celest. Mech. Dyn. Astron. 106(1), 39–67 (2010). doi:10.1007/s10569-009-9239-9

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Finlay, C.C., Maus, S., Beggan, C.D., Bondar, T.N., Chambodut, A., Chernova, T.A., et al.: International geomagnetic reference field: the eleventh generation. Geophys. J. Int. 183(3), 1216–1230 (2010). doi:10.1111/j.1365-246X.2010.04804.x

    Article  ADS  Google Scholar 

  • Gatti-Bono, C., Perkins, N.C.: Physical and numerical modelling of the dynamic behavior of a fly line. J. Sound Vib. 255(3), 555–577 (2002). doi:10.1006/jsvi.2001.4180

    Article  ADS  Google Scholar 

  • Georgiou, I.: On the global geometric structure of the dynamics of the elastic pendulum. Nonlinear Dyn. 18(1), 51–68 (1999). doi:10.1023/A:1008356204490

    Article  MATH  MathSciNet  Google Scholar 

  • Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer, Berlin (2006)

    Google Scholar 

  • Howell, C.T.: Investigation of the Dynamics of Low-Tension Cables. PhD Thesis, No. WHOI-92-30. Woods Hole Oceanographic Institution MA (1992)

  • Irvine, H.M.: Cable Structures. The MIT Press, Cambridge (1981)

    Google Scholar 

  • James, H.G., Balmain, K.G.: Guided electromagnetic waves observed on a conducting ionospheric tether. Radio Sci. 36(6), 1631–1644 (2001). doi:10.1029/2000RS002583

    Article  ADS  Google Scholar 

  • Jablonski, A.M., Scott, R.: Deorbiting of low earth orbit (LEO) microsatellites. Can. Aeronaut. Space J. 55(2), 55–67 (2009). doi:10.5589/q09-005

    Article  ADS  Google Scholar 

  • Jin, D.P., Wen, H., Chen, H.: Nonlinear resonance of a subsatellite on a short constant tether. Nonlinear Dyn. 71(3), 479–488 (2013). doi:10.1007/s11071-012-0674-x

    Article  MathSciNet  Google Scholar 

  • Jung, W., Mazzoleni, A., Chung, J.: Dynamic analysis of a tethered satellite system with a moving mass. Nonlinear Dyn. 75(1–2), 267–281 (2014). doi:10.1007/s11071-013-1064-8

    Article  MathSciNet  Google Scholar 

  • Kirchgraber, U., Manz, U., Stoffer, D.: Rigorous proof of chaotic behaviour in a dumbbell satellite model. J. Math. Anal. Appl. 251(2), 897–911 (2000). doi:10.1006/jmaa.2000.7143

    Article  MATH  MathSciNet  Google Scholar 

  • Kristiansen, K.U., Palmer, P., Roberts, M.: A unification of models of tethered satellites. SIAM J. Appl. Dyn. Syst. 10(3), 1042–1069 (2011). doi:10.1137/090779887

    Article  MATH  MathSciNet  Google Scholar 

  • Kristiansen, K.U., Palmer, P.L., Roberts, R.M.: Numerical modelling of elastic space tethers. Celest. Mech. Dyn. Astron. 113(2), 235–254 (2012). doi:10.1007/s10569-012-9411-5

    Article  MathSciNet  ADS  Google Scholar 

  • Krupa, M., Poth, W., Schagerl, M., Steindl, A., Steiner, W., Troger, H., et al.: Modelling, dynamics and control of tethered satellite systems. Nonlinear Dyn. 43(1–2), 73–96 (2006). doi:10.1007/s11071-006-0752-z

    Article  MATH  MathSciNet  Google Scholar 

  • Kumar, K.D.: Review of dynamics and control of nonelectrodynamic tethered satellite systems. J. Spacecr. Rockets 43(4), 705–720 (2006). doi:10.2514/1.5479

    Article  ADS  Google Scholar 

  • Lanoix, E.L.M., Misra, A.K., Modi, V.J., Tyc, G.: Effect of electromagnetic forces on the orbital dynamics of tethered satellites. J. Guid. Control Dyn. 28(6), 1309–1315 (2005). doi:10.2514/1.1759

    Article  ADS  Google Scholar 

  • Lee, T., Leok, M., McClamroch, N.H.: High-fidelity numerical simulation of complex dynamics of tethered spacecraft. Acta Astronaut. 99, 215–230 (2014). doi:10.1016/j.actaastro.2014.02.021

    Article  ADS  Google Scholar 

  • Park, H., Kwon, D., Jung, D.: A Numerical Analysis for the Dynamic Behavior of Rov Launcher and Umbilical Cable Under Combined Excitations. In: The Fifteenth International Offshore and Polar Engineering Conference, June 19–24, 2005, Seoul, Korea, The International Society of Offshore and Polar Engineers (2005)

  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Schmidt, D., Trimmer, R.: A preliminary gravitational model to degree 2160. In: Jekeli, C., Bastos, L., Fernandes, J. (eds.) Gravity, Geoid and Space Missions. International Association of Geodesy Symposia, vol. 129, pp. 18–23. Springer, Berlin (2005)

    Chapter  Google Scholar 

  • Picone, J.M., Hedin, A.E., Drob, D.P., Aikin, A.C.: NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. 107(A12), SIA15-1–SIA15-16 (2002). doi:10.1029/2002JA009430

  • Sanmartin, J.R., Martinez-Sanchez, M., Ahedo, E.: Bare wire anodes for electrodynamic tethers. J. Propul. Power 9(3), 353–360 (1993). doi:10.2514/3.23629

    Article  ADS  Google Scholar 

  • Shabana, A.: Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics. Nonlinear Dyn. 16(3), 293–306 (1998). doi:10.1023/A:1008072517368

    Article  MATH  MathSciNet  Google Scholar 

  • Simo, J.C., Tarnow, N.: The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Z. Angew. Math. Phys. 43(5), 757–792 (1992). doi:10.1007/BF00913408

    Article  MATH  MathSciNet  Google Scholar 

  • Simo, J.C., Tarnow, N., Doblare, M.: Non-linear dynamics of three-dimensional rods: exact energy and momentum conserving algorithms. Int. J. Numer. Meth. Eng. 38(9), 1431–1473 (1995). doi:10.1002/nme.1620380903

    Article  MATH  MathSciNet  Google Scholar 

  • Storch, J.A.: Aerodynamic Disturbances on Spacecraft in Free-Molecular Flow, Aerospace Report NO. TR-2003(3397)-1, the Aerospace Corporation, El Segundo, CA (2002)

  • Sun, F.J., Zhu, Z.H., LaRosa, M.: Dynamic modeling of cable towed body using nodal position finite element method. Ocean Eng. 38(4), 529–540 (2011). doi:10.1016/j.oceaneng.2010.11.016

    Article  Google Scholar 

  • Takeichi, N.: Practical operation strategy for deorbit of an electrodynamic tethered system. J. Spacecr. Rockets 43(6), 1283–1288 (2006). doi:10.2514/1.19635

    Article  ADS  Google Scholar 

  • Tragesser, S.G., San, H.: Orbital maneuvering with electrodynamic tethers. J. Guid. Control Dyn. 26(5), 805–810 (2003). doi:10.2514/2.5115

    Article  ADS  Google Scholar 

  • Tuwankotta, J.M., Quispel, G.R.W.: Geometric numerical integration applied to the elastic pendulum at higher-order resonance. J. Comput. Appl. Math. 154(1), 229–242 (2003). doi:10.1016/S0377-0427(02)00825-7

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Vallado, D.A.: Fundamentals of Astrodynamics and Applications, vol. 2, pp. 511–515. Springer, Berlin (2001)

    Google Scholar 

  • Wang, F., Huang, G-l, Deng, D.-H.: Dynamic response analysis of towed cable during deployment/retrieval. J. Shanghai Jiaotong Univ. Sci. 13(2), 245–251 (2008). doi:10.1007/s12204-008-0245-y

    Article  MATH  Google Scholar 

  • Williams, P., Trivailo, P.: Dynamics of circularly towed aerial cable systems, part I: optimal configurations and their stability. J. Guid. Control Dyn. 30(3), 753–765 (2007). doi:10.2514/1.20433

    Article  ADS  Google Scholar 

  • Woo, P., Misra, A.K.: Dynamics of a partial space elevator with multiple climbers. Acta Astronaut. 67(7–8), 753–763 (2010). doi:10.1016/j.actaastro.2010.04.023

    Article  ADS  Google Scholar 

  • Wu, X., You, X., Wang, B.: Structure-Preserving Algorithms for Oscillatory Differential Equations, vol. 23. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  • Xu, D., Kong, X., Liao, J., Yang, Z., Wang, F.: Dynamic modeling and simulation of electrodynamic tether system in stationkeeping phase. J. Mech. Sci. Technol. 25(1), 97–102 (2011). doi:10.1007/s12206-010-1016-x

    Article  Google Scholar 

  • Zanutto, D., Lorenzini, E.C., Mantellato, R., Colombatti, G., Sánchez Torres, A.: Orbital Debris Mitigation Through Deorbiting with Passive Electrodynamic Drag. In: 63th International Astronautical Congress Naples, Italy, IAC 12-D9.2.8 (2012)

  • Zhong, R., Zhu, Z.H.: Dynamics of nanosatellite deorbit by bare electrodynamic tether in low earth orbit. J. Spacecr. Rockets 50(3), 691–700 (2013a). doi:10.2514/1.A32336

    Article  MathSciNet  ADS  Google Scholar 

  • Zhong, R., Zhu, Z.H.: Libration dynamics and stability of electrodynamic tethers in satellite deorbit. Celest. Mech. Dyn. Astron. 116(3), 279–298 (2013b). doi:10.1007/s10569-013-9489-4

    Article  MathSciNet  ADS  Google Scholar 

  • Zhu, Z.H., Meguid, S.A.: Elastodynamic analysis of low tension cables using a new curved beam element. Int. J. Solids Struct. 43, 1492–1504 (2006). doi:10.1016/j.ijsolstr.2005.03.053

    Google Scholar 

  • Zhu, Z.H., Meguid, S.A.: Modeling and simulation of aerial refueling by finite element method. Int. J. Solids Struct. 44(24), 8057–8073 (2007). doi:10.1016/j.ijsolstr.2007.05.026

    Article  MATH  Google Scholar 

  • Zhu, Z.H., Zhong, R.: Deorbiting dynamics of electrodynamic tether. Int. J. Aerosp. Lightweight Struct. 1(1), 47–66 (2011). doi:10.3850/S2010428611000043

    Article  Google Scholar 

  • Zhu, Z.H.: Dynamic modeling of cable system using a new nodal position finite element method. Int. J. Numer. Method Biomed. Eng. 26(6), 692–704 (2010). doi:10.1002/cnm.1161

    MATH  Google Scholar 

  • Zhu, Z.H, Meguid, S., Ong L.S.: Dynamic Multiscale Simulation of Towed Cable and Body. In: Bathe K.J. (Eds), Computational Fluid and Solid Mechanics 2003. Proceedings of 2nd MIT Conference on Computational Fluid and Solid Mechanics, vol. 1, pp. 800–803. Elsevier (2003)

Download references

Acknowledgments

This work is supported by the Discovery Grant, Discovery Accelerate Supplement Grant and Engage Grant of Natural Sciences and Engineering Research Council of Canada, and partially supported by National Natural Science Foundation of China, Grant No. 11372177.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. H. Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G.Q., Zhu, Z.H. Long-term dynamic modeling of tethered spacecraft using nodal position finite element method and symplectic integration. Celest Mech Dyn Astr 123, 363–386 (2015). https://doi.org/10.1007/s10569-015-9640-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9640-5

Keywords

Navigation