Skip to main content
Log in

Figures of equilibrium of an inhomogeneous self-gravitating fluid

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper is concerned with the figures of equilibrium of a self-gravitating ideal fluid with a stratified density and a steady-state velocity field. As in the classical formulation of the problem, it is assumed that the figures, or their layers, uniformly rotate about an axis fixed in space. It is shown that the ellipsoid of revolution (spheroid) with confocal stratification, in which each layer rotates with a constant angular velocity, is at equilibrium. Expressions are obtained for the gravitational potential, change in the angular velocity and pressure, and the conclusion is drawn that the angular velocity on the outer surface is the same as that of the corresponding Maclaurin spheroid. We note that the solution found generalizes a previously known solution for piecewise constant density distribution. For comparison, we also present a solution, due to Chaplygin, for a homothetic density stratification. We conclude by considering a homogeneous spheroid in the space of constant positive curvature. We show that in this case the spheroid cannot rotate as a rigid body, since the angular velocity distribution of fluid particles depends on the distance to the symmetry axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Relevant calculations can be easily performed using the formulae of Sect. 3.3 and astronomical data available from the Internet.

  2. A. Clairaut took part in the first expeditions which confirmed I. Newton’s viewpoint that the Earth is compressed from the poles.

  3. The proof of convergence was not published by Lyapunov. Problems of convergence for the Maclaurin and Huygens–Roche figures are solved in Kholshevnikov and Elkin (2002), Kholshevnikov (2003) and Kholshevnikov and Kurdubov (2004).

  4. This work was not published during the life-time of S. A. Chaplygin and appeared for the first time in his posthumous collected works prepared by L. N. Sretenskii.

  5. In the case of piecewise constant distribution the function \(\rho ^{\prime }(\mu )\) is a combination of Dirac delta functions.

References

  • Albouy, A.: There is a projective dynamics. Eur. Math. Soc. Newsl. 89, 37–43 (2013)

    MATH  MathSciNet  Google Scholar 

  • Appell, P.: Traité de Mécanique Rationnelle: T. 4–1. Figures d’Équilibre d’une Masse liquide Homogène en Rotation. Gautier-Villars, Paris (1921)

    Google Scholar 

  • Betti, E.: Sopra i moti che conservano la figura ellissoidale a una massa fluida eterogenea. Annali di Matematica Pura ed Applicata, Serie II X, 173–187 (1881)

    Google Scholar 

  • Bizyaev, I.A., Borisov, A.V., Mamaev, I.S.: Figures of equilibrium of an inhomogeneous self-gravitating fluid. Nonlinear Dyn. 10(1), 73–100 (2014) (in Russian)

  • Borisov, A.V., Mamaev, I.S.: Poisson Structures and Lie Algebras in Hamiltonian Mechanics. Izd.UdSU, Izhevsk (1999) (in Russian)

  • Borisov, A.V., Mamaev, I.S., Kilin, A.A.: Two-body problem on a sphere. Reduction, stochasticity, periodic orbits. Regul. Chaotic Dyn. 9(3), 265–279 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Borisov, A.V., Mamaev, I.S.: The restricted two-body problem in constant curvature spaces. Celest. Mech. Dyn. Astron. 96(1), 1–17 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Borisov, A.V., Mamaev, I.S.: Relations between integrable systems in plane and curved spaces. Celest. Mech. Dyn. Astron. 99(4), 253–260 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Borisov, A.V., Mamaev, I.S., Kilin, A.A.: The Hamiltonian dynamics of self-gravitating liquid and gas ellipsoids. Regul. Chaotic Dyn. 14(2), 179–217 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Chandrasekhar, S.: Ellipsoidal Figures of Equilibrium. Yale University Press, New Haven (1969)

    MATH  Google Scholar 

  • Chaplygin, S.A.: Steady-State Rotation of a Liquid Homogeneous Spheroid in Collected Works, vol. 2. Hydrodynamics. Aerodynamics. Gostekhizdat, Moscow (1948)

    Google Scholar 

  • Clairaut, A.C.: Théorie de la Figure de la Terre: Tirée des Principes de l’Hydrostratique. Paris Courcier, Paris (1743)

  • Dedekind, R.: Zusatz zu der vorstehenden Abhandlung. J. Reine Angew. Math. 58, 217–228 (1861)

    Article  MATH  Google Scholar 

  • Dirichlet, G.L.: Untersuchungen über ein Problem der Hydrodynamik (Aus dessen Nachlass hergestellt von Herrn R. Dedekind zu Zürich). J. Reine Angew. Math. (Crelle’s J.) 58, 181–216 (1861)

    Article  MATH  Google Scholar 

  • Dyson, F.J.: Dynamics of a spinning gas cloud. J. Math. Mech. 18(1), 91–101 (1968)

    MATH  Google Scholar 

  • Esteban, E.P., Vasquez, S.: Rotating stratified heterogeneous oblate spheroid in Newtonian physics. Celest. Mech. Dyn. Astron. 81(4), 299–312 (2001)

    Article  ADS  MATH  Google Scholar 

  • Fassò, F., Lewis, D.: Stability properties of the Riemann ellipsoids. Arch. Ration. Mech. Anal. 158, 259–292 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Ferrers, N.M.: On the potentials, ellipsoids, ellipsoidal shells, elliptic laminae, and elliptic rings, of variable densities. Q. J. Pure Appl. Math. 14, 1–23 (1875)

    Google Scholar 

  • Gaffet, B.: Spinning gas clouds: Liouville integrability. J. Phys. A Math. Gen. 34, 2097–2109 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Hamy, M.: Étude sur la Figure des Corps Célestes. Ann. de l’Observatoire de Paris Mémories 19, 1–54 (1889)

    Google Scholar 

  • Jacobi, C.G.J.: Über die Figur des Gleichgewichts. Poggendorff Annalen der Physik und Chemie 33, 229–238 (1834)

    Article  ADS  Google Scholar 

  • Kholshevnikov, K.V., Elkin, A.V.: Convergence of Liapunov series for Maclaurin ellipsoids. Celest. Mech. Dyn. Astron. 84(1), 57–63 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Kholshevnikov, K.V.: Convergence of Liapunov series for Maclaurin ellipsoids: real analysis. Celest. Mech. Dyn. Astron. 87(3), 257–262 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Kholshevnikov, K.V., Kurdubov, S.L.: Convergence of Liapunov series for Huygens–Roche figures. Celest. Mech. Dyn. Astron. 89(1), 83–96 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Killing, H.W.: Die Mechanik in den Nichteuklidischen Raumformen. J. Reine Angew. Math. XCVIII(1), 1–48 (1885)

    MathSciNet  Google Scholar 

  • Kochin, N.E., Kibel, I.A., Rose, N.V.: Theoretical Hydromechanics, vol. 1. Fizmatgiz, Moscow (1963) (in Russian)

  • Kong, D., Zhang, K., Schubert, G.: Shapes of two-layer models of rotating planets. J. Geophys. Res. 115(E12) (2010). doi:10.1029/2010JE003720

  • Kozlov, V.V.: The Newton and Ivory theorems of attraction in spaces of constant curvature. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 5, 43–47 (2000) (in Russian)

  • Kozlov, V.V., Harin, A.O.: Kepler’s problem in constant curvature spaces. Celest. Mech. Dyn. Astron. 54(4), 393–399 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Lichtenstein, L.: Gleichgewichtsfiguren Rotierender Flüssigkeiten. Springer, Berlin (1933)

    Book  Google Scholar 

  • Liouville, J.: Sur la Figure d’une Masse Fluide Homogène, en E’quilibre et Douée d’un Mouvement de Rotation. J. de l’École Polytechnique 14, 289–296 (1834)

    Google Scholar 

  • Lyapunov, A.M.: Collected Works, vol. 3. Akad. Nauk SSSR, Moscow (1959)

  • Lyttleton, R.A.: The Stability of Rotating Liquid Masses. Cambridge University Press, Cambridge (1953)

    MATH  Google Scholar 

  • MacLaurin, C.: A Treatise of Fluxions. In Two Books. Ruddimans, Edinburgh (1742)

  • Meinel, R., Ansorg, M., Kleinwachter, A., Neugebauer, G., Petroff, D.: Relativistic Figures of Equilibrium. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  • Montalvo, D., Martínez, F. J., Cisneros, J.: On Equilibrium Figures of Ideal Fluids in the Form of Confocal Spheroids Rotating with Common and Different Angular Velocities Revista Mexicana de Astronomia y Astrofisica, 5, 293 (1982)

  • Pizzetti, P.: Principii della Teoria Meccanica della Figura dei Pianeti. Enrico Spoerri, Libraio-Editore, Pisa (1913)

    MATH  Google Scholar 

  • Riemann, B.: Ein Beitrag zu den Untersuchungen über die Bewegung eines Flüssigen gleichartigen Ellipsoïdes. Abh. d. Königl. Gesel l. der Wiss. zu Göttingen (1861)

  • Schrödinger, E.: A method of determining quantum–mechanical eigenvalues and eigenfunctions. Proc. R. Irish Acad. Sect. A 46, 9–16 (1940)

    MATH  Google Scholar 

  • Tedone, O.: Il moto di un ellissoide fluido secondo l’ipotesi di Dirichlet. Annali della Scuola Normale Superiore di Pisa 7, I1–IV100 (1895)

  • Véronnet, A.: Rotation de l’Ellipsoide Hétérogène et Figure Exacte de la Terre. J. Math. Pures et Appl. 8, 331–463 (1912)

    MATH  Google Scholar 

  • Volterra, V.: Sur la Stratification d’une Masse Fluide en Equilibre. Acta Math. 27(1), 105–124 (1903)

    Article  MATH  MathSciNet  Google Scholar 

  • Williams, D.R.: Earth fact sheet. http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html (2004)

Download references

Acknowledgments

The authors thank A. Albouy for useful advice and invaluable assistance in the course of work. The work of Alexey V. Borisov was carried out within the framework of the state assignment to the Udmurt State University “Regular and Chaotic Dynamics”. The work of Ivan S. Mamaev was supported by the RFBR Grants 14-01-00395-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Borisov.

Additional information

This is a revised version of the paper (Bizyaev et al. 2014), previously published in Russian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bizyaev, I.A., Borisov, A.V. & Mamaev, I.S. Figures of equilibrium of an inhomogeneous self-gravitating fluid. Celest Mech Dyn Astr 122, 1–26 (2015). https://doi.org/10.1007/s10569-015-9608-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9608-5

Keywords

Mathematics Subject Classification

Navigation