Skip to main content
Log in

Comparison of low-energy lunar transfer trajectories to invariant manifolds

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In this study, transfer trajectories from the Earth to the Moon that encounter the Moon at various flight path angles are examined, and lunar approach trajectories are compared to the invariant manifolds of selected unstable orbits in the circular restricted three-body problem. Previous work focused on lunar impact and landing trajectories encountering the Moon normal to the surface, and this research extends the problem with different flight path angles in three dimensions. The lunar landing geometry for a range of Jacobi constants is computed, and approaches to the Moon via invariant manifolds from unstable orbits are analyzed for different energy levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alessi, E.M., Gómez, G., Masdemont, J.J.: Leaving the moon by means of invariant manifolds of libration point orbits. Commun. Nonlinear Sci. Numer. Simul. 14(12), 4153–4167 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Anderson, R.L., Lo, M.W.: Virtual exploration by computing global families of trajectories with supercomputers. In: Vallado, D.A., Gabor, M.J., Desai, P.N. (eds.) Advances in the Astronautical Sciences, Spaceflight Mechanics, pp. 1855–1874. American Astronautical Society, Univelt, Copper Mountain, Co (2005)

  • Anderson, R.L., Parker, J.S.: A survey of ballistic transfers to the lunar surface. In: 21st AAS/AIAA Space Flight Mechanics Meeting, AAS 11-278. New Orleans, LA, USA (2011)

  • Anderson, R.L., Parker, J.S.: Survey of ballistic transfers to the lunar surface. J. Guid. Control Dyn. 35(4), 1256–1267 (2012)

    Article  Google Scholar 

  • Baoyin, H., McInnes, C.R.: Trajectories to and from the Lagrange points and the primary body surfaces. J. Guid. Control Dyn. 29(4), 998–1003 (2006)

    Article  Google Scholar 

  • Broschart, S.B., Chung, M.K.J., Hatch, S.J., Ma, J.H., Sweetser, T.H., Weinstein-Weiss, S. S. Angelopoulos, V. : Preliminary trajectory design for the ARTEMIS lunar mission. In: Rao, A.V., Lovell, T.A., Chan, F.K., Cangahuala, L.A. (eds.) Advances in the Astronautical Sciences, American Astronautical Society, pp. 1329–1344. Univelt, Pittsburgh PA (2009)

  • Chung, M.J., Hatch, S.J., Kangas, J.A., Long, S.M., Roncoli, R.B., Sweetser, T.H.: Trans-lunar cruise trajectory design of Grail (Gravity Recovery and Interior Laboratory) mission. In: AIAA Guidance, Navigation and Control Conference, AIAA 2010-8384. Toronto, ON, Canada (2010)

  • Conley, C.: Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math. 16, 732–746 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, K.E., Anderson, R.L., Scheeres, D.J., Born, G.H.: The use of invariant manifolds for transfers between unstable periodic orbits of different energies. Celest. Mech. Dyn. Astron. 107(4), 471–485 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Davis, K.E., Anderson, R.L., Scheeres, D.J., Born, G.H.: Optimal transfers between unstable periodic orbits using invariant manifolds. Celest. Mech. Dyn. Astron. 109(3), 241–264 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  • Easton, R.W.: Regularization of vector fields by surgery. J. Differ. Equ. 10, 92–99 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Fehlberg, E.: Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge–Kutta Formulas with Stepsize Control. Technical Report NASA TR R-287 (1968)

  • Folkner, W.M., Williams, J.G., Boggs, D.H.: The Planetary and Lunar Ephemeris De421. Interoffice Memo IOM 343R-08-003. Jet Propulsion Laboratory (2008)

  • Gómez, G., Jorba, A., Masdemont, J., Simó, C.: Study of the transfer from the earth to a halo orbit around the equilibrium point \(\text{ L}_1\). Celest. Mech. Dyn. Astron. 56, 541–562 (1993)

    Article  ADS  MATH  Google Scholar 

  • Hatch, S.J., Roncoli, R.B., Sweetser, T.H.: Grail trajectory design: Lunar orbit insertion through science. In: AIAA/AAS Astrodynamics Specialist Conference, AIAA-2010-8385. Toronto, ON, Canada (2010)

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Shoot the moon. In: AAS/AIAA Astrodynamics Specialist Conference, AAS 00-166. Clearwater, FL, USA (2000)

  • Krogh, F.T.: DIVA/SIVA, Chapter 14.1 of Math77, Release 4.0. Technical Report JPL D-1341, Rev. C, Jet Propulsion Laboratory, Pasadena (1992)

  • Lo, M.W., Chung, M.K.J.: Lunar sample return via the interplanetary superhighway. In: AIAA/AAS Astrodynamics Specialist Meeting, Paper AIAA 2002-4718. Monterey, CA, USA (2002)

  • McGehee, R.: Triple collision in the collinear three-body problem. Invent. Math. 27, 191–227 (1974)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Miele, A.: Theorem of image trajectories in the Earth–Moon space. Astronaut. Acta 6(51), 225–232 (1960)

    Google Scholar 

  • Mission Evaluation Team: Apollo 11 Mission Report. Technical Report NASA SP-238, National Aeronautics and Space Administration (1971)

  • NASA: NASA’s Exploration Systems Architecture Study. Technical Report NASA-TM-2005-214062, National Aeronautics and Space Administration (2005)

  • Ozimek, M., Howell, K.: Low-thrust transfers in the earth-moon system including applications to libration point orbits. J. Guid. Control Dyn. 33(2), 533–549 (2010)

    Article  Google Scholar 

  • Parker, J.S.: Families of low-energy lunar halo transfers. In: Vadali, S.R., Cangahuala, L.A., Paul, W., Schumacher, J., Guzman, J.J. (eds.) Advances in the Astronautical Sciences, Spaceflight Mechanics, pp. 483–502. American Astronautical Society, Univelt, Tampa, FL (2006)

  • Parker, J.S.: Low-Energy Ballistic Lunar Transfers. PhD thesis, University of Colorado at Boulder, Boulder, CO, USA (2007)

  • Parker, J.S., Lo, M.W.: Shoot the moon 3D. In: Williams, B.G., D’Amario, L.A., Howell, K.C., Hoots, F.R. (eds.) Advances in the Astronautical Sciences, Astrodynamics, pp. 2067–2086. American Astronautical Society, Univelt, Lake Tahoe, NV (2005)

    Google Scholar 

  • Roncoli, R.B.: Lunar Constants and Models Document. Technical Report JPL D-32296, Jet Propulsion Laboratory (2005)

  • Roncoli, R.B., Fujii, K.K.: Mission design overview for the gravity recovery and interior laboratory (GRAIL) mission. In: AIAA/AAS Astrodynamics Specialist Conference, AIAA 2010-8383. Toronto, ON, Canada (2010)

  • Seidelmann, P.K. (ed.): Explanatory Supplement to the Astronomical Almanac. University Science Books, Sausalito (1992)

    Google Scholar 

  • Shampine, L.F., Gordon, M.K.: Computer Solution of Ordinary Differential Equations. W. H. Freeman, San Francisco (1975)

  • Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    Google Scholar 

  • Topputo, F., Vasile, M., Bernelli-Zazzera, F.: Interplanetary and lunar transfers using libration points. In: Proceedings of the 18th International Symposium on Space Flight Dynamics (ESA SP-548), pp. 583–588. Munich, Germany (2004)

  • Von Kirchbach, C., Zheng, H., Aristoff, J., Kavanagh, J., Villac, B.F., Lo, M.W.: Trajectories leaving a sphere in the restricted three-body problem. In: Vallado, D.A., Gabor, M.J., Desai, P.N. (eds.) Advances in the Astronautical Sciences, Spaceflight Mechanics, pp. 1875–1902. American Astronautical Society, Univelt, Copper Mountain, CO (2005)

  • Woodard, M., Folta, D., Woodfork, D.: ARTEMIS: the first mission to lunar libration orbits. In: 21st International Symposium on Space Flight Dynamics. Centre National d’Études Spatiales, Toulouse, France (2009)

Download references

Acknowledgments

The authors would like to thank Ted Sweetser for his support and for making this work possible. They would also like to thank Roby Wilson and Damon Landau for their helpful comments and reviews of this work. The research presented in this paper has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney L. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, R.L., Parker, J.S. Comparison of low-energy lunar transfer trajectories to invariant manifolds. Celest Mech Dyn Astr 115, 311–331 (2013). https://doi.org/10.1007/s10569-012-9466-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9466-3

Keywords

Navigation