Skip to main content
Log in

A symplectic mapping for the synchronous spin-orbit problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We derive a symplectic mapping model based on Hadjidemetriou’s method for the synchronous spin-orbit problem with and without the additional precession of the nodes. The mapping is derived from the averaged potential of the spin-orbit dynamical model and includes the main spin-orbit interactions, i.e. the non-zero obliquity and wobble motion of the rotating body. In addition the orbit of the perturbing body allows non-zero inclination and eccentricity. To obtain the equilibrium configuration we calculate the position and stability of the fixed points in the 1:1 spin-orbit resonance and relate them to the equilibria of the continuous system. We use the mapping equations to investigate the long-term stability close to the fixed point solutions of the mapping. We also apply the mapping method to the case of the moon Titan and validate the mapping approach by means of numerical integrations. The mapping model reproduces all the characteristics of Deprit’s model of free rotation as well as the dynamical features of Henrard’s averaged model of spin-orbit interaction with great precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We adapt the notation introduced in D’Hoedt and Lemaitre (2004) and also used in Lemaitre et al. (2006)

  2. The superscripts \((o,s)\) which we are going to use separate the (o)rbital and (s)pin variables, respectively.

  3. In contrast to D’Hoedt and Lemaitre (2004) we use the modified set of action-angle variables for both basic dynamical models since the modified actions are small quantities for small values of \(e,i\) and \(J,K\), thus suitable for perturbation theory.

  4. The signs appearing in front of the angles in (14) are opposite to the signs given e.g. in Lemaitre et al. (2006). This is due to the different definition of the rotation matrices \(R_i\). The present definition of \(R_i\) is the one used in Noyelles et al. (2008) also given in the appendix.

  5. A low order expansion of \(\bar{V}_G^{(2)}(P,p;P_4)\) can be found in the appendix B (in Supplementary Material appended to the online version of this article).

  6. To be precise the average should be replaced by a canonical transformation from original to new mean variables. The transformation will be such to remove the dependency of the potential on the angle \(p_4\) to higher orders in a suitable small parameter.

  7. In the Supplementary Material appended to the online version of this article.

  8. Note, that the formulae are only correct up to order \(O(\gamma _1,\gamma _2)^2\), i.e. their product equals to one only up to \(O(\gamma _1,\gamma _2)^2\). We also checked the agreement of the second order formulae with the eigenvalues obtained with a numerical method in the range of values of the parameters \(A\simeq B\simeq C\).

References

  • Abdullaev, S.S.: A new integration method of Hamiltonian systems by symplectic maps. J. Phys. A 32, 2745–2766 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Baland, R.M., Van Hoolst, T., Yseboodth, M., Karatekin, O.: Titan’s obliquity as evidence for a subsurface ocean? A &A 530, A141 (2011)

    ADS  Google Scholar 

  • Beletskii, V.V.: Resonance rotation of celestial bodies and Cassini’s laws. Celest. Mech. dyn. Astron. 6, 356–378 (1972)

    MathSciNet  MATH  Google Scholar 

  • Bills, B.G., Nimmo, F.: Rotational dynamics and internal structure of Titan. Icarus 214, 351–355 (2011)

    Article  ADS  Google Scholar 

  • Borderies, N., Yoder, C.F.: Phobos’ gravity field and its influence on its orbit and physical librations. A & A 233, 235–251 (1990)

    ADS  Google Scholar 

  • Bouquillon, S., Kinoshita, H., Souchay, J.: Extension of Cassini’s laws. Celest. Mech. Dyn. Astron. 86, 29–57 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Breiter, S., Buciora, M.: Explicit symplectic integrator for rotating satellites. Celest. Mech. Dyn. Astron. 77, 127–137 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Cachucho, F., Cincotta, P.M., Ferraz-Mello, S.: Chirikov diffusion in the asteroidal three-body resonance (5–2-2). Celest. Mech. Dyn. Astron. 108, 35–58 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Celletti, A., Chierchia, L.: Measures of basin of attraction in spin-orbit dynamics. Celest. Mech. Dyn. Astron. 101, 159–170 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chirikov, B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  • Colombo, G.: Cassini’s second and third laws. Astron. J. 71, 861–891 (1966)

    Google Scholar 

  • Deprit, A.: Free rotation of a rigid body studied in the phase plane. Am. J. Phys. 35, 424–428 (1967)

    Article  ADS  Google Scholar 

  • D’Hoedt, S., Lemaitre, A.: The spin-orbit resonant rotation of Mercury: a two degree of freedom Hamiltonian model. Celest. Mech. Dyn. Astron. 89, 267–283 (2004)

    Google Scholar 

  • Ferraz-Mello, S.: A symplectic mapping approach to the study of the stochasticity in asteroidal resonances. Celest. Mech. Dyn. Astron. 65, 421–437 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  • Froeschlé, C.: Mappings in astrodynamics. In: Ferraz-Mello, S. (ed.) Chaos, Resonance and Collective Dynamical Phenomena in the Solar System, pp. 375–390 (1992)

  • Goldreich, P., Peale, S.: Spin-orbit coupling in the solar system. Astron. J. 71, 425–437 (1966)

    Article  ADS  Google Scholar 

  • Hadjidemetriou, J.: Mapping models for Hamiltonian systems with application to resonant asteroid motion. In: Roy, A. (ed) Predictability Stability and Chaos in N-Body, Dynamical Systems, pp. 157–175 (1991)

  • Hadjidemetriou, J.: A hyperbolic twist mapping model for the study of asteroid orbits near the 3:1 resonance. ZAMP 37, 776–792 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  • Hadjidemetriou, J.: Symplectic mappings. In: Ferraz-Mello, S. et al. (eds.) Dynamics, Ephemerides and Astrometry of the Solar System, IAU Symp 172, 255–266 (1996)

  • Hadjidemetriou, J.: A symplectic mapping model as a tool to understand the dynamics of 2/1 resonant asteroid motion. Celest. Mech. Dyn. Astron. 73, 65–76 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Henrard, J.: The rotation of Io. Icarus 178, 144–153 (2005)

    Article  ADS  Google Scholar 

  • Henrard, J., Schwanen, G.: Rotation of synchronous satellites. Celest. Mech. Dyn. Astron. 89, 181–200 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Iess, L., Rappaport, J., Jacobson, A., Racioppa, P., Stevenson, D.J., Tortora, P., Armstrong, J.W., Asmar, S.W.: Gravity field shape and moment of inertia of Titan. Science 327, 1367–1369 (2010)

    Article  ADS  Google Scholar 

  • Kinoshita, H.: Theory of the rotation of the rigid earth. Celest. Mech. Dyn. Astron. 15, 277–326 (1977)

    MathSciNet  Google Scholar 

  • Laskar, J., Robutel, P.: High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dyn. Astron. 80, 39–62 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lemaitre, A., D’Hoedt, S., Rambaux, N.: The 3:2 spin-orbit resonant motion of mercury. Celest. Mech. Dyn. Astron. 95, 213–224 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lhotka, C.: Dynamics expansion points: an extension to Hadjidemetriou’s mapping method. Celest. Mech. Dyn. Astron. 104, 175–189 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Noyelles, B., Lemaitre, A., Vienne, A.: Titan’s rotation—a 3-dimensional theory. A &A 478, 959–970 (2008)

    ADS  Google Scholar 

  • Peale, S.J.: Generalized Cassini’s laws. Astron. J. 74, 483–489 (1969)

    Article  ADS  Google Scholar 

  • Stumpff, K.: Himmelsmechanik Band I. Deutscher Verlag der Wissenschaften, Berlin (1959)

  • Touma, J., Wisdom, J.: Lie-Poisson integrators for rigid body dynamics in the solar system. Astron. J. 107, 1189–1202 (1994)

    Article  ADS  Google Scholar 

  • Vienne, A., Duriez, L.: TASS1.6: ephemerides of the major Saturnian satellites. A &A 297, 588–605 (1995)

    ADS  Google Scholar 

  • Ward, W.R.: Tidal friction and generalized Cassini’s laws in the solar system. Astron. J. 80, 64–70 (1975)

    Article  ADS  Google Scholar 

  • Wisdom, J.: The origin of the kirkwood gaps: a mapping for asteroidal motion near the 3/1 commensurability. Astron. J. 87, 577–593 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  • Wisdom, J.: Chaotic behaviour and the origin of the 3/1 Kirkwood gap. Icarus 56, 51–74 (1983)

    Article  ADS  Google Scholar 

  • Wisdom, J., Holman, M.: Symplectic maps for the n-body problem. Astron. J. 102, 1528–1538 (1991)

    Article  ADS  Google Scholar 

  • Wolfram, S.: Mathematica, V8. Wolfram Research, Champaign, IL USA (2012)

  • Yoshida, H.: Recent progress in the theory and application of symplectic integrators. Celest. Mech. Dyn. Astron. 56, 27–43 (1993)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

The author thanks A. Lemaitre and B. Noyelles for fruitful discussions and for reading the manuscript carefully. B. Noyelles provided an independent software to integrate the un-averaged problem to check the numerical integrations. C. Lhotka was financially supported by the contract Prodex C90253 ROMEO from BELSPO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Lhotka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 42 KB)

Appendix A

Appendix A

The rotation matrices, used in the present paper, are defined following the convention:

$$\begin{aligned} R_1=\left( \begin{array}{c@{\quad }c@{\quad }c} 1&0&0 \\ 0&c&-s \\ 0&s&c \\ \end{array} \right), \ R_2=\left( \begin{array}{c@{\quad }c@{\quad }c} c&0&s \\ 0&1&0 \\ -s&0&c \\ \end{array} \right), \ R_3=\left( \begin{array}{c@{\quad }c@{\quad }c} c&-s&0 \\ s&c&0 \\ 0&0&1 \\ \end{array} \right), \end{aligned}$$

where \(R_j=R_j(\psi )\) with \(j=1,2,3\) and where we used the abbrevations \(c=\cos (\psi )\) and \(s=\sin (\psi )\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lhotka, C. A symplectic mapping for the synchronous spin-orbit problem. Celest Mech Dyn Astr 115, 405–426 (2013). https://doi.org/10.1007/s10569-012-9464-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9464-5

Keywords

Navigation