Skip to main content
Log in

Analytical direct planetary perturbations on the orbital motion of satellites

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

An analytical expansion of the disturbing function arising from direct planetary perturbations on the motion of satellites is derived. As a Fourier series, it allows the investigation of the secular effects of these direct perturbations, as well as of every argument present in the perturbation. In particular, we construct an analytical model describing the evection resonance between the longitude of pericenter of the satellite orbit and the longitude of a planet, and study briefly its dynamic. The expansion developed in this paper is valid in the case of planar and circular planetary orbits, but not limited in eccentricity or inclination of the satellite orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abu-El-Ata N., Chapront J.: Développements analytiques de l’inverse de la distance en mécanique céleste. Astron. Astrophys. 38, 57–66 (1975)

    ADS  MATH  Google Scholar 

  • Bidart P.: MPP01, a new solution for planetary perturbations in the orbital motion of the Moon. Astron. Astrophys. 366, 351–358 (2001)

    Article  ADS  Google Scholar 

  • Breiter S.: The prograde C7 resonance for earth and mars satellite orbits. Celest. Mech. 77, 201–214 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bretagnon P.: Termes à à longues périodes dans le système solaire. Astron. Astrophys. 30, 141–154 (1974)

    ADS  MATH  Google Scholar 

  • Brown E.W.: An Introductory Treatise on the Lunar Theory. Cambridge University Press, Cambridge (1896)

    MATH  Google Scholar 

  • Brown E.W.: The Inequalities in the Motion of the Moon due to the Direct Action of the Planets. Cambridge University Press, Cambridge (1908a)

    MATH  Google Scholar 

  • Brown E.W.: On the Lunar inequalities due to planetary action. Mon. Not. R. Astron. Soc. 68, 148–170 (1908b)

    ADS  Google Scholar 

  • Brumberg V.A., Ivanova T.: New approach to determining planetary perturbations in lunar theory. Celest. Mech. 26, 77–81 (1982)

    Article  ADS  MATH  Google Scholar 

  • Chapront J., Abu-El-Ata N.: Les perturbations planétaires de la Lune en variables elliptiques. I. Formulaire et séparation de Brown. Astron. Astrophys. 55, 83–94 (1977)

    MathSciNet  ADS  MATH  Google Scholar 

  • Chapront J., Francou G.: The lunar theory ELP revisited. Introduction of new planetary perturbations. Astron. Astrophys. 404, 735–742 (2003)

    Article  ADS  Google Scholar 

  • Chapront-Touzé M.: Construction itérative d’une solution du problème central de la Lune. Influence des petits diviseurs. Astron. Astrophys. 36, 5–16 (1974)

    ADS  MATH  Google Scholar 

  • Chapront-Touzé M., Chapront J.: Les perturbations planétaires de la Lune. Astron. Astrophys. 91, 233–246 (1980)

    ADS  MATH  Google Scholar 

  • Chapront-Touzé M., Chapront J.: The lunar ephemeris ELP 2000. Astron. Astrophys. 124, 50–62 (1983)

    ADS  Google Scholar 

  • Chapront-Touzé M., Chapront J.: ELP 2000-85: a semi-analytical lunar ephemeris adequate for historical times. Astron. Astrophys. 190, 342–352 (1988)

    ADS  Google Scholar 

  • Ćuk M., Burns J.A.: On the secular behavior of irregular satellites. Astron. J. 128, 2518–2541 (2004)

    Article  ADS  Google Scholar 

  • Ćuk M.: Excitation of lunar eccentricity by planetary resonances. Science 318, 244 (2007)

    Article  ADS  Google Scholar 

  • Delaunay C.: Note sur les mouvements du périgée et du noeud de la Lune. Compt. Rend. Hebdom. Acad. Sci 74, 17–21 (1872)

    MATH  Google Scholar 

  • Deprit A., Henrard J., Rom A.: Analytical lunar ephemeris. I. Definition of the main problem. Astron. Astrophys. 10, 257–269 (1971a)

    MathSciNet  ADS  MATH  Google Scholar 

  • Deprit A., Henrard J., Rom A.: Analytical lunar ephemeris: the variational orbit. Astron. J. 76, 273–276 (1971b)

    Article  ADS  Google Scholar 

  • Ferraz-Mello S.: Canonical perturbations theories—degenerate systems and resonance. Astrophysics and Space Science Library, Springer (2007)

    Google Scholar 

  • Ford E.B., Kozinsky B., Rasio F.A.: Secular evolution of hierarchical triple star systems. Astrophys. J. 535, 385–401 (2000)

    Article  ADS  Google Scholar 

  • Frouard J., Fouchard M., Vienne A.: About the dynamics of the evection resonance. Astron. Astrophys. 515, A54 (2010)

    Article  ADS  Google Scholar 

  • Frouard J., Vienne A., Fouchard M.: The long-term dynamics of the jovian irregular satellites. Astron. Astrophys. 532, A44 (2011)

    Article  ADS  Google Scholar 

  • Henrard J.: A new solution to the main problem of Lunar theory. Celest. Mech. 19, 337 (1979)

    Article  ADS  MATH  Google Scholar 

  • Hill G.W.: On the development of the perturbative function in periodic series. Analyst II, 161–180 (1875)

    Google Scholar 

  • Kaula W.M.: Development of the lunar and solar disturbing functions for a close satellite. Astroph. J. 67, 300 (1962)

    Article  ADS  Google Scholar 

  • Kaula, W.M., Yoder, C.F.: Lunar orbit evolution and tidal heating of the moon. Abstracts of the Lunar and Planetary Science Conference, 7, 440 (1976)

    Google Scholar 

  • Kinoshita H., Nakai H.: Secular perturbations of fictitious satellites of Uranus. Celest. Mech. Dyn. Astron. 52, 293–303 (1991)

    Article  ADS  Google Scholar 

  • Kinoshita H., Nakai H.: Analytical solution of the kozai resonance and its application. Celest. Mech. Dyn. Astron. 75, 125–147 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kinoshita H., Nakai H.: General solution of the Kozai mechanism. Celest. Mech. Dyn. Astron. 98, 67–74 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kozai Y.: Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  • Laskar J.: Secular evolution of the solar system over 100 million years. Astron. Astrophys. 198, 341–362 (1988)

    ADS  Google Scholar 

  • Laskar J., Boué G.: Explicit expansion of the three-body disturbing function for arbitrary eccentricities and inclinations. Astron. Astrophys. 522, A60 (2010)

    Article  ADS  Google Scholar 

  • Lee M.H., Peale S.J.: Secular evolution of hierarchical planetary systems. Astrophys. J. 592, 1201–1216 (2003)

    Article  ADS  Google Scholar 

  • Lidov, M.L., Analiz Evolucii Orbit Iskustvennich Sputnikov. Problemi Dvigenia Iskustvennich Nebesnich, Tel. Izd. Akad. Nauk SSSR. 119–134 (1961)

  • Lidov M.L.: The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 9, 719–759 (1962)

    Article  ADS  Google Scholar 

  • Morbidelli A.: Modern Celestial Mechanics: Aspects of Solar System Dynamics. Taylor & Francis, London (2002)

    Google Scholar 

  • Murray C.D., Dermott S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Nesvorný D., Morbidelli A.: Three-body mean motion resonances and the chaotic structure of the asteroid belt. Astron. J. 116, 3029–3037 (1998)

    Article  ADS  Google Scholar 

  • Nesvorný D., Morbidelli A.: An analytic model of three-body mean motion resonances. Celest. Mech. Dyn. Astron. 71, 243–271 (1999)

    Article  ADS  Google Scholar 

  • Radau R.: Mémoires et observations. Remarques sur certaines inégalités à longue période du mouvement de la lune. Bull. Astronomique Serie I 9, 137–146 (1892)

    ADS  Google Scholar 

  • Radau R.: Mémoires et observations. Remarques sur certaines inégalités à longue période du mouvement de la lune [Suite et fin]. Bull. Astronomique Serie I 9, 185–212 (1892)

    ADS  Google Scholar 

  • Schmidt D.S.: The main problem of Lunar theory solved by the method of Brown. Moon Planets 23, 135–164 (1980)

    Article  ADS  Google Scholar 

  • Simon J.L., Bretagnon P.: First order perturbations of the four large planets. Astron. Astrophys. 42, 259–263 (1975)

    ADS  MATH  Google Scholar 

  • Simon J.L., Bretagnon P.: Second order perturbations of the four large planets. Astron. Astrophys. 69, 369–372 (1978)

    ADS  Google Scholar 

  • Standaert D.: Direct perturbations of the planets on the Moon’s motion. Celest. Mech. 22, 357–369 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Standaert D.: Comments about the direct perturbations of Venus and Mars on the Moon’s motion. Celest. Mech. 26, 113–119 (1982)

    Article  ADS  MATH  Google Scholar 

  • Standaert D.: Direct perturbations of the planets on the Moon’s motion: results and comparisons. Celest. Mech. 30, 21–29 (1983)

    Article  ADS  MATH  Google Scholar 

  • Tisserand F.: Traité de Mécanique Céleste, Tome I. Gauthier-Villars, Paris (1889)

    Google Scholar 

  • Tisserand F.: Traité de Mécanique Céleste, Tome III. Gauthier-Villars, Paris (1894)

    Google Scholar 

  • Touma J., Wisdom J.: Resonances in the early evolution of the earth-moon system. Astron. J. 115, 1653–1663 (1998)

    Article  ADS  Google Scholar 

  • Yokoyama, T., Vieira Neto, E., Winter, O.C., Sanchez, D.M., de Oliveira Brasil, P.I.: On the evection resonance and its connection to the stability of outer satellites. Mathematical Problems in Engineering 251978 (2008). doi:10.1155/2008/251978

  • Winter O.C., Boldrin L.A.G., Vieira Neto E., Vieira Martins R., Giuliatti Winter S.M., Gomes R.S., Marchis F., Descamps P.: On the stability of the satellites of asteroid 87 Sylvia. Mon. Not. R. Astron. Soc. 395, 218–227 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Frouard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frouard, J., Yokoyama, T. Analytical direct planetary perturbations on the orbital motion of satellites. Celest Mech Dyn Astr 115, 59–79 (2013). https://doi.org/10.1007/s10569-012-9447-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9447-6

Keywords

Navigation