Original Article

Celestial Mechanics and Dynamical Astronomy

, Volume 107, Issue 3, pp 299-318

First online:

Orbit determination with the two-body integrals

  • G. F. GronchiAffiliated withDipartimento di Matematica, Università di Pisa Email author 
  • , L. DimareAffiliated withDipartimento di Matematica, Università di Roma ‘La Sapienza’
  • , A. MilaniAffiliated withDipartimento di Matematica, Università di Pisa

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We investigate a method to compute a finite set of preliminary orbits for solar system bodies using the first integrals of the Kepler problem. This method is thought for the applications to the modern sets of astrometric observations, where often the information contained in the observations allows only to compute, by interpolation, two angular positions of the observed body and their time derivatives at a given epoch; we call this set of data attributable. Given two attributables of the same body at two different epochs we can use the energy and angular momentum integrals of the two-body problem to write a system of polynomial equations for the topocentric distance and the radial velocity at the two epochs. We define two different algorithms for the computation of the solutions, based on different ways to perform elimination of variables and obtain a univariate polynomial. Moreover we use the redundancy of the data to test the hypothesis that two attributables belong to the same body (linkage problem). It is also possible to compute a covariance matrix, describing the uncertainty of the preliminary orbits which results from the observation error statistics. The performance of this method has been investigated by using a large set of simulated observations of the Pan-STARRS project.


Orbit determination Algebraic methods Attributables Linkage Covariance matrix