Skip to main content

Advertisement

Log in

Pinus radiata bark extract induces caspase-independent apoptosis-like cell death in MCF-7 human breast cancer cells

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

In the present study, we investigated the anticancer activity of Pinus radiata bark extract (PRE) against MCF-7 human breast cancer cells. First, we observed that PRE induces potent cytotoxic effects in MCF-7 cells. The cell death had features of cytoplasmic vacuolation, plasma membrane permeabilization, chromatin condensation, phosphatidylserine externalization, absence of executioner caspase activation, insensitivity to z-VAD-fmk (caspase inhibitor), increased accumulation of autophagic markers, and lysosomal membrane permeabilization (LMP). Both the inhibition of early stage autophagy flux and lysosomal cathepsins did not improve cell viability. The antioxidant, n-acetylcysteine, and the iron chelator, deferoxamine, failed to restore the lysosomal integrity indicating that PRE-induced LMP is independent of oxidative stress. This was corroborated with the absence of enhanced ROS production in PRE-treated cells. Chelation of both intracellular calcium and zinc promotes PRE-induced LMP. Geranylgeranylacetone, an inducer of Hsp70 expression, also had no significant protective effect on PRE-induced LMP. Moreover, we found that PRE induces endoplasmic reticulum (ER) stress and mitochondrial membrane depolarization in MCF-7 cells. The ER stress inhibitor, 4-PBA, did not restore the mitochondrial membrane integrity, whereas cathepsin inhibitors demonstrated significant protective effects. Collectively, our results suggest that PRE induces an autophagic block, LMP, ER stress, and mitochondrial dysfunction in MCF-7 cells. However, further studies are clearly warranted to explore the exact mechanism behind the anticancer activity of PRE in MCF-7 human breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aits S, Jäättelä M. Lysosomal cell death at a glance. J Cell Sci. 2013;126(Pt 9):1905–12.

    Article  CAS  PubMed  Google Scholar 

  • Amelio I, Melino G, et al. Cell death pathology: cross-talk with autophagy and its clinical implications. Biochem Biophys Res Commun. 2011;414(2):277–81.

    Article  CAS  PubMed  Google Scholar 

  • Apel A, Herr I, et al. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res. 2008;68(5):1485–94.

    Article  CAS  PubMed  Google Scholar 

  • Appelqvist H, Wäster P, et al. The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol. 2013;5(4):214–26.

    Article  CAS  PubMed  Google Scholar 

  • Bjørkøy G, Lamark T, et al. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol. 2009;452:181–97.

    Article  PubMed  Google Scholar 

  • Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27(50):6434–51.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Li Y, et al. Tea polyphenols induced apoptosis of breast cancer cells by suppressing the expression of survivin. Sci Rep. 2014;4:4416.

    PubMed  PubMed Central  Google Scholar 

  • Covarrubias L, Hernández-García D, et al. Function of reactive oxygen species during animal development: passive or active? Dev Biol. 2008;320(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  • Filomeni G, De Zio D, et al. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015;22(3):377–88.

    Article  CAS  PubMed  Google Scholar 

  • Hasima N, Ozpolat B. Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer. Cell Death Dis. 2014;5:e1509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heymann D. Autophagy: a protective mechanism in response to stress and inflammation. Curr Opin Investig Drugs. 2006;7(5):443–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howell A. An early peak of relapse after surgery for breast cancer. Breast Cancer Res. 2004;6(6):255–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ, Elazar Z, et al. Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy. 2008;4(7):849–50.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Ichimura Y. Physiological significance of selective degradation of p62 by autophagy. FEBS Lett. 2010;584(7):1374–8.

    Article  CAS  PubMed  Google Scholar 

  • Kukic I, Kelleher SL, et al. Zn2+ efflux through lysosomal exocytosis prevents Zn2+-induced toxicity. J Cell Sci. 2014;127(Pt 14):3094–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SJ, Koh JY. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol Brain. 2010;3(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JW, Kim WH, et al. ER stress is implicated in mitochondrial dysfunction-induced apoptosis of pancreatic beta cells. Mol Cells. 2010;30(6):545–9.

    Article  CAS  PubMed  Google Scholar 

  • LeGendre O, Breslin PA, et al. (−)-Oleocanthal rapidly and selectively induces cancer cell death via lysosomal membrane permeabilization. Mol Cell Oncol. 2015;2(4):e1006077.

    Article  PubMed  PubMed Central  Google Scholar 

  • Livesey KM, Tang D, et al. Autophagy inhibition in combination cancer treatment. Curr Opin Investig Drugs. 2009;10(12):1269–79.

    CAS  PubMed  Google Scholar 

  • Mena S, Rodríguez ML, et al. Pterostilbene-induced tumor cytotoxicity: a lysosomal membrane permeabilization-dependent mechanism. PLoS One. 2012;7(9):e44524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moustapha A, Pérétout PA, et al. Curcumin induces crosstalk between autophagy and apoptosis mediated by calcium release from the endoplasmic reticulum, lysosomal destabilization and mitochondrial events. Cell Death Dis. 2015, Article number: 15017.

  • Nylandsted J, Rohde M, et al. Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc Natl Acad Sci U S A. 2000;97(14):7871–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nylandsted J, Gyrd-Hansen M, et al. Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med. 2004;200(4):425–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberle C, Huai J, et al. Lysosomal membrane permeabilization and cathepsin release is a Bax/Bak-dependent, amplifying event of apoptosis in fibroblasts and monocytes. Cell Death Differ. 2010;17(7):1167–78.

    Article  CAS  PubMed  Google Scholar 

  • Ostenfeld MS, Fehrenbacher N, et al. Effective tumor cell death by sigma-2 receptor ligand siramesine involves lysosomal leakage and oxidative stress. Cancer Res. 2005;65(19):8975–83.

    Article  CAS  PubMed  Google Scholar 

  • Poljsak B, Šuput D, et al. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev. 2013;2013:956792.

    Article  PubMed  PubMed Central  Google Scholar 

  • Racoma IO, Meisen WH, et al. Thymoquinone inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells. PLoS One. 2013;8(9):e72882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Muela N, Hernández-Pinto AM, et al. Lysosomal membrane permeabilization and autophagy blockade contribute to photoreceptor cell death in a mouse model of retinitis pigmentosa. Cell Death Differ. 2015;22(3):476–87.

    Article  PubMed  Google Scholar 

  • Samie MA, Xu H. Lysosomal exocytosis and lipid storage disorders. J Lipid Res. 2014;55(6):995–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta. 2013;1833(12):3460–70.

    Article  CAS  PubMed  Google Scholar 

  • Song Q, Gou WL, et al. FAM3A attenuates ER stress-induced mitochondrial dysfunction and apoptosis via CHOP-Wnt pathway. Neurochem Int. 2016;94:82–9.

    Article  CAS  PubMed  Google Scholar 

  • Suganuma M, Kurusu M, et al. Green tea polyphenol stimulates cancer preventive effects of celecoxib in human lung cancer cells by upregulation of GADD153 gene. Int J Cancer. 2006;119(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  • Terman A, Kurz T, et al. Lysosomal labilization. IUBMB Life. 2006;58(9):531–9.

    Article  CAS  PubMed  Google Scholar 

  • Trondl R, Flocke LS, et al. Triapine and a more potent dimethyl derivative induce endoplasmic reticulum stress in cancer cells. Mol Pharmacol. 2014;85(3):451–9.

    Article  PubMed  Google Scholar 

  • Villalpando Rodriguez GE, Torriglia A. Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2. Biochim Biophys Acta. 2013;1833(10):2244–53.

    Article  CAS  PubMed  Google Scholar 

  • Wei T, Kang Q, et al. Activation of autophagy and paraptosis in retinal ganglion cells after retinal ischemia and reperfusion injury in rats. Exp Ther Med. 2015;9(2):476–82.

    PubMed  Google Scholar 

  • Weng CJ, Yen GC. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat Rev. 2012;38(1):76–87.

    Article  CAS  PubMed  Google Scholar 

  • Wiggins HL, Wymant JM, et al. Disulfiram-induced cytotoxicity and endo-lysosomal sequestration of zinc in breast cancer cells. Biochem Pharmacol. 2015;93(3):332–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YT, Tan HL, et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem. 2010;285(14):10850–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav RK, Chae SW, et al. Endoplasmic reticulum stress and cancer. J Cancer Prev. 2014;19(2):75–88.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu C, Huang X, et al. Lysosome dysfunction enhances oxidative stress-induced apoptosis through ubiquitinated protein accumulation in Hela cells. Anat Rec (Hoboken). 2013;296(1):31–9.

    Article  CAS  Google Scholar 

  • Zuo L, Zhou T, et al. Biological and physiological role of reactive oxygen species—the good, the bad and the ugly. Acta Physiol (Oxf). 2015;214(3):329–48.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support for the present study came from Forest Science & Technology Projects (Project No. S211315L010110), Forest Service, Republic of Korea, and Kookmin University research grant (2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Kyoon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesan, T., Choi, YW., Mun, SP. et al. Pinus radiata bark extract induces caspase-independent apoptosis-like cell death in MCF-7 human breast cancer cells. Cell Biol Toxicol 32, 451–464 (2016). https://doi.org/10.1007/s10565-016-9346-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-016-9346-9

Keywords

Navigation