Skip to main content
Log in

Tumor necrosis factor alpha stimulates p62 accumulation and enhances proteasome activity independently of ROS

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Circulating TNF-α levels are elevated in a wide variety of cardiovascular pathologies including congestive heart failure (CHF). This cytokine is one of the leading mediators of the immune inflammatory response with widespread biological functions regulated by membrane receptors. The pathophysiological implication of the downstream effects of activating the TNF-α system in CHF appears to depend on its direct effects on the heart and endothelium. Evidence supporting the notion that circulating TNF-α promotes protein breakdown was initially obtained from studies utilizing transgenic animals overexpressing TNF-α, animals with experimental diseases that augment TNF-α and in animals treated with exogenous TNF-α. It was then demonstrated that TNF-α acts directly on cultured myotubes to stimulate catabolism; however, whether the effects are the same in the heart remains poorly understood. The present study shows that TNF-α treatment induces autophagy, but clearance through this pathway appears obstructed and, consequently, results in increased protein ubiquitination. Furthermore, prolonged TNF-α treatment enhanced E3 ubiquitin ligase expression but reduced activity of the proteasome. These results suggest that TNF-α induces sarcomeric dysfunction and remodeling by disrupting autophagy and elevating the degradation of myofibrillar proteins. Therefore, myocardial remodeling, as a consequence to reduced contractile proteins, contributes to contractile dysfunction, a symptom often observed in the end stages of CHF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

CHF:

Congestive heart failure

FoxO:

Forkhead homeobox type O

LC3:

Microtubule-associated protein 1A/1B-light chain 3

MAFbx:

Muscle atrophy F-box

MuRF-1:

Muscle ring finger-1

ROS:

Reactive oxygen species

SQSTM1:

Sequestosome 1

TNF-α:

Tumor necrosis factor-alpha

TNF-R1/2:

Tumor necrosis factor receptor 1/2

UPP:

Ubiquitin–proteasome pathway

References

  • Aiken CT, Kaake RM, Wang X, Huang L. Oxidative stress-mediated regulation of proteasome complexes. Mol Cell Proteomics. 2011;10:1–11.

    Article  Google Scholar 

  • Bradham WS, Bozkurt B, Gunasinghe H, Mann D, Spinale FG. Tumor necrosis factor-alpha and myocardial remodelling in progression of heart failure: a current prospective. Science. 2002;53:822–30.

    CAS  Google Scholar 

  • Ceconi CS, Bachetti T, Corti A, Ferrari R. Tumor necrosis factor in congestive heart failure: a mechanism of disease for the new millennium? Prog Cardiovasc Dis. 1998;41:25–30.

    Article  CAS  PubMed  Google Scholar 

  • Cosper PF, Leinwand LA. Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Cancer Res. 2011;71:1710–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eskelinen EL. New insights into the mechanisms of macroautophagy in mammalian cells. Int Rev Cell Biol. 2008;266:207–47.

    Article  CAS  Google Scholar 

  • Feldmann M, Maini RN. Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol. 2001;19:163–96.

    Article  CAS  PubMed  Google Scholar 

  • Glass DJ. Skeletal muscle hypertrophy and atrophy signalling pathways. Int J Biochem Cell Biol. 2005;37:1974–84.

    Article  CAS  PubMed  Google Scholar 

  • Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, et al. Heart disease and stroke statistics — 2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–245.

    Article  PubMed  Google Scholar 

  • Gozuacik D, Kimchi A. Autophagy and cell death. Curr Top Dev Biol. 2007;78:217–45.

    Article  CAS  PubMed  Google Scholar 

  • Gurevitch J, Frolkis I, Yuhas Y, Paz Y, Matsa M, Mohr R, et al. Tumor necrosis factor-alpha is released from the isolated heart undergoing ischemia and reperfusion. J Am Coll Cardiol. 1996;28:247–52.

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson AB, Gottlieb RA. Autophagy in ischemic heart disease. Circ Res. 2007;104:150–8.

    Article  Google Scholar 

  • Irwin MW. Tissue expression and immunolocalization of tumor necrosis factor-alpha in postinfarction dysfunctional myocardium. Circulation. 1999;99:1492–8.

    Article  CAS  PubMed  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19:5720–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaur K, Sharma AK, Dhingra S. Singa lPK. Interplay of TNF-alpha and IL-10 in regulating oxidative stress in isolated adult cardiac myocytes. J Mol Cell Cardiol. 2006;41:1023–30.

    Article  CAS  PubMed  Google Scholar 

  • Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chem Biol. 2001;8:739–58.

    Article  CAS  PubMed  Google Scholar 

  • Krown KA, Yasui Y, Brooker M, Dubin A, Hguyen C, Harris G, et al. TNF-α receptor expression in rat cardiac myocytes: TNF inhibition of L-type Ca2+ current and Ca2+ transients. FEBS Lett. 1995;367:24–30.

    Article  Google Scholar 

  • Kuusisto E, Suuronen T, Salminen A. Ubiquitin-binding protein p62 expression is induced during apoptosis and proteasomal inhibition in neuronal cells. Biochem Biophys Res Commun. 2001;280:223–38.

    Article  CAS  PubMed  Google Scholar 

  • Lacerda L, McCarthy J, Mungly SF, Lynn EG, Sack MN, Opie LH, et al. TNF-α protects cardiac mitochondria independently of its cell surface receptors. Basic Res Cardiol. 2010;105:751–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levine B, Yuan J. Autophagy in cell death: an innocent convict? J Clin Invest. 2005;115:2679–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990;323:236–41.

    Article  CAS  PubMed  Google Scholar 

  • Li YP. TNF-alpha is a mitogen in skeletal muscle. Am J Physiol Cell Physiol. 2003;285:C370–6.

    Article  CAS  PubMed  Google Scholar 

  • Li Y-P, Reid BR. NF-κB mediates the protein loss induced by TNF-α in differentiated skeletal muscle myotubes. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1165–70.

    CAS  PubMed  Google Scholar 

  • Li Y-P, Schwartz RJ, Waddell ID, Holloway BR, Reid MB. Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-κB activation in response to tumor necrosis factor a. FASEB J. 1998;12:871–80.

    CAS  PubMed  Google Scholar 

  • Maekawa N. Improved myocardial ischemia/reperfusion injury in mice lacking tumor necrosis factor-alpha. J Am Coll Cardiol. 2002;39:1229–35.

    Article  CAS  PubMed  Google Scholar 

  • Marques AJ, Palanimurugan R, Matias AC, Ramos PC, Dohmen RJ. Catalytic mechanism and assembly of the proteasome. Chem Rev. 2009;109:1509–36.

    Article  CAS  PubMed  Google Scholar 

  • Martinet W, Knaapen MW, Kockx MM, De Meyer GR. Autophagy in cardiovascular disease. Trends Mol Med. 2007;13:482–91.

    Article  CAS  PubMed  Google Scholar 

  • Meldrum DR. Tumor necrosis factor in the heart. Am J Physiol. 1998;274:R577–95.

    CAS  PubMed  Google Scholar 

  • Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy. 2007;3:542–5.

    Article  CAS  PubMed  Google Scholar 

  • Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007;13:619–24.

    Article  CAS  PubMed  Google Scholar 

  • Nussbaum AK. Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of elonase 1. Proc Natl Acad Sci U S A. 1998;95:12504–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pandy UB. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature. 2007;447:859–63.

    Google Scholar 

  • Portbury AL, Willis MS, Patterson C. Tearin’ up my heart: proteolysis in the cardiac sarcomere. J Biol Chem. 2011;286:9929–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Razeghi P. Atrophy, hypertrophy and hypoxemia induce transcriptional regulators of the ubiquitin proteasome system in the rat heart. Biochem Biophys Res Commun. 2006;342:361–4.

    Article  CAS  PubMed  Google Scholar 

  • Seta Y, Shan K, Bozkurt B, Oral H, Mann DL. Basic mechanisms in heart failure: the cytokine hypothesis. J Card Fail. 1996;2:243–9.

    Article  CAS  PubMed  Google Scholar 

  • Skyschally A, Gres P, Hoffmann S, Haude M, Erbel R, Schulz R, et al. Bidirectional role of tumor necrosis factor-alpha in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ Res. 2007;100:140–6.

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia LA, Pennica D, Goeddel DV. Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. J Biol Chem. 1993;268:18542–8.

    CAS  PubMed  Google Scholar 

  • Torre-Amione G. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation. 1996;93:704–11.

    Article  CAS  PubMed  Google Scholar 

  • Vandenabeele P, Declercq W, Beyaert R, Fiers W. Two tumour necrosis factor receptors: structure and function. Trends Cell Biol. 1995;5:392–9.

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Crisostomo PR, Markel TA, Wang Y, Meldrum DR. Mechanism of sex differences in TNFR2-mediated cardioprotection. Circulation. 2008;118:S38–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007;6:472–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Stellenbosch University for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balindiwe J. N. Sishi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

The cytotoxicity of different concentrations of TNF-α on H9C2 cells over a total period of 48 hr. All values are expressed as a percentage of control. *p < 0.01, # p < 0.001, p < 0.0001 vs. respective control (C), n = 6. (DOC 53 kb)

Supplementary Figure 2

TNF-R1 protein expression as measured by western blot in H9C2 cells following treatment with TNF-α. TNF-R1 is expressed as a percentage of the control. p = 0.0001 vs. respective control (C), n = 4. (DOC 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opperman, C.M., Sishi, B.J.N. Tumor necrosis factor alpha stimulates p62 accumulation and enhances proteasome activity independently of ROS. Cell Biol Toxicol 31, 83–94 (2015). https://doi.org/10.1007/s10565-015-9295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-015-9295-8

Keywords

Navigation