Skip to main content
Log in

Toxicity of commercially available engineered nanoparticles to Caco-2 and SW480 human intestinal epithelial cells

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The effects of ingestion of engineered nanoparticles (NPs), especially via drinking water, are unknown. Using NPs spiked into synthetic water and cell culture media, we investigated cell death, oxidative stress, and inflammatory effects of silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO) NPs on human intestinal Caco-2 and SW480 cells. ZnO NPs were cytotoxic to both cell lines, while Ag and TiO2 NPs were toxic only at 100 mg/L to Caco-2 and SW480, respectively. ZnO NPs led to significant cell death in synthetic freshwaters with 1 % phosphate-buffered saline in both cell lines, while Ag and TiO2 NPs in buffered water led to cell death in SW480 cells. NP exposures did not yield significant increased reactive oxygen species generation but all NP exposures led to increased IL-8 cytokine generation in both cell lines. These results indicate cell stress and cell death from NP exposures, with a varied response based on NP composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbott Chalew TE. Emerging contaminants and public health: Evaluation of the stability, toxicity, and treatment of engineered nanoparticles in drinking water. Ph.D. 3533276, The Johns Hopkins University; 2012

  • Abdelhay A, Carmen-Mihaela T, Christophe M, Cédric M, Hélène G, Ghouti M, et al. Physicochemical properties and cellular toxicity of (poly)aminoalkoxysilanes-functionalized ZnO quantum dots. Nanotechnol. 2012;23(33):335101.

    Article  Google Scholar 

  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2008;3(2):279–90.

    Article  Google Scholar 

  • Baker RD, Baker SS, Larosa K. Polarized caco-2 cells. Dig Dis Sci. 1995;40(3):510–8.

    Article  PubMed  CAS  Google Scholar 

  • Barone F, de Berardis B, Bizzarri L, Degan P, Andreoli C, Zijno A, et al. Physico-chemical characteristics and cyto-genotoxic potential of ZnO and TiO 2 nanoparticles on human colon carcinoma cells. J Phys Conf Ser. 2011;304(1):012047.

    Article  Google Scholar 

  • Benn TM, Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol. 2008;42(11):4133–9.

    Article  PubMed  CAS  Google Scholar 

  • Blaser SA, Scheringer M, Macleod M, Hungerbuhler K. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ. 2008;390:396–406.

    Article  PubMed  CAS  Google Scholar 

  • Brogna A, Ferrara R, Bucceri AM, Lanteri E, Catalano F. Influence of aging on gastrointestinal transit time: an ultrasonographic and radiologic study. Invest Radiol. 1999;34:357–9.

    Article  PubMed  CAS  Google Scholar 

  • Brun E, Jugan M-L, Herlin-Boime N, Jaillard D, Fayard B, Flank AM, et al. Investigation of TiO2 nanoparticles translocation through a caco-2 monolayer. J Phys Conf Ser. 2011;304(1):012048.

    Article  Google Scholar 

  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle KL, Hess KL, Jones RL, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112(43):13608–19.

    Article  PubMed  CAS  Google Scholar 

  • Crabtree JE, Farmery SM, Lindley IJ, Figura N, Peichl P, Tompkins DS. CagA/cytotoxic strains of Helicobacter pylori and interleukin-8 in gastric epithelial cell lines. J Clin Pathol. 1994;47(10):945–50.

    Article  PubMed  CAS  Google Scholar 

  • De Berardis B, Civitelli G, Condello M, Lista P, Pozzi R, Arancia G, et al. Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol Appl Pharmacol. 2010;246(3):116–27.

    Article  Google Scholar 

  • de Jong WH, Park MVDZ. Nanotoxicology - in vitro studies: what do you need to know? In: Nanoimpactnet, editor. 1st NanoImpactNet conference. Lausanne: NanoImpactNet; 2009.

    Google Scholar 

  • Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in caco-2 cells is size dependent. Pharm Res. 1997;14(11):1568–73.

    Article  PubMed  CAS  Google Scholar 

  • Finamore A, Massimi M, Conti Devirgiliis L, Mengheri E. Zinc deficiency induces membrane barrier damage and increases neutrophil transmigration in caco-2 cells. J Nutr. 2008;138(9):1664–70.

    PubMed  CAS  Google Scholar 

  • Gaiser BK, Fernandes TF, Jepson MA, Lead JR, Tyler CR, Baalousha M, et al. Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ Toxicol Chem. 2012;31(1):144–54.

    Article  PubMed  CAS  Google Scholar 

  • Gerloff K, Albrecht C, Boots AW, Förster I, Schins RPF. Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal caco-2 cells. Nanotoxicol. 2009;3(4):355–64.

    Article  CAS  Google Scholar 

  • Gerloff K, Fenoglio I, Carella E, Kolling J, Albrecht C, Boots AW, et al. Distinctive toxicity of TiO2 rutile/anatase mixed phases nanoparticles on caco-2 cells. Chem Res Toxicol. 2012;25(3):646–55.

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk F, Nowack B. The release of engineered nanomaterials to the environment. J Environ Monitor. 2011;13(5):1145–55.

    Article  CAS  Google Scholar 

  • Handy RD, Jha AN, Al-Jubory A. In vitro techniques and their application to nanoparticles. Comp Biochem Physiol A Mol Integr Physiol. 2009;153(2, Supplement 1):S87–S.

    Article  Google Scholar 

  • Hu X, Cook S, Wang P, Hwang H-M. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci Total Environ. 2009a;407(8):3070–2.

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Pan Y, Wang J, Chen J, Li J, Ren L. Meso-tetra (carboxyphenyl) porphyrin (TCPP) nanoparticles were internalized by SW480 cells by a clathrin-mediated endocytosis pathway to induce high photocytotoxicity. Biomed Pharmacother. 2009b;63(2):155–64.

    Article  PubMed  CAS  Google Scholar 

  • Huang H, O’Melia CR. Direct-flow microfiltration of aquasols II. On the role of colloidal natural organic matter. J Membr Sci. 2008;325:903–13.

    Article  CAS  Google Scholar 

  • Hyung H, Kim J-H. Dispersion of C60 in natural water and removal by conventional drinking water treatment processes. Water Res. 2009;43(9):2463–70.

    Article  PubMed  CAS  Google Scholar 

  • Jepson MA. Gastrointestinal tract. In: Fadeel B, Pietroiusti A, Shvedova AA, editors. Adverse effects of engineered nanomaterials: exposure, toxicology, and impact on human health. New York: Elsevier; 2012. p. 209–24.

    Chapter  Google Scholar 

  • Ji Z, Jin X, George S, Xia T, Meng H, Wang X, et al. Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ Sci Technol. 2010;44(19):7309–14.

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Oberdörster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanoparticle Res. 2009;11(1):77–89.

    Article  CAS  Google Scholar 

  • Jobin C, Haskill S, Mayer L, Panja A, Sartor R. Evidence for altered regulation of I kappa B alpha degradation in human colonic epithelial cells. J Immunol. 1997;158(1):226–34.

    PubMed  CAS  Google Scholar 

  • Johnston H, Hutchison G, Christensen F, Peters S, Hankin S, Stone V. Identification of the mechanisms that drive the toxicity of TiO2 particulates: the contribution of physicochemical characteristics. Part Fibre Toxicol. 2009;6(1):1–27.

    Article  Google Scholar 

  • Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol. 2010;40(4):328–46.

    Article  PubMed  CAS  Google Scholar 

  • Jung HC, Eckmann L, Yang SK, Panja A, Fierer J, Morzycka-Wroblewska E, et al. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Investig. 1995;95(1):55–65.

    Article  PubMed  CAS  Google Scholar 

  • Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm. 2000;50(1):147–60.

    Article  PubMed  CAS  Google Scholar 

  • Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, et al. Release of silver nanoparticles from outdoor facades. Environ Pollut. 2010;158(9):2900–5.

    Article  PubMed  CAS  Google Scholar 

  • Kilari S, Pullakhandam R, Nair KM. Zinc inhibits oxidative stress-induced iron signaling and apoptosis in caco-2 cells. Free Radic Biol Med. 2010;48(7):961–8.

    Article  PubMed  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem. 2008;27(9):1825–51.

    Article  PubMed  CAS  Google Scholar 

  • Koeneman B, Zhang Y, Westerhoff P, Chen Y, Crittenden J, Capco D. Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biol Toxicol. 2010;26(3):225–38.

    Article  PubMed  CAS  Google Scholar 

  • Kroll A, Pillukat M, Hahn D, Schnekenburger J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol. 2012;86(7):1123–36.

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 2008;42(18):4591–602.

    Article  PubMed  CAS  Google Scholar 

  • Limbach LK, Bereiter R, Mueller E, Krebs R, Gaelli R, Stark WJ. Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearning efficiency. Environ Sci Technol. 2008;42(15):5828–33.

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, et al. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicol. 2010;4(3):319–30.

    Article  CAS  Google Scholar 

  • Mahendra S, Li Q, Lyon DY, Brunet L, Alvarez PJJ. Nanotechnology-enabled water disinfection and microbial control: merits and limitations. In: Nora S, Mamadou D, Jeremiah D, Anita S, Richard S, editors. Nanotechnology applications for clean water. Boston: William Andrew; 2009. p. 157–66.

    Chapter  Google Scholar 

  • Mueller NC, Nowack B. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol. 2008;42(12):4447–53.

    Article  PubMed  CAS  Google Scholar 

  • Nowack B. The behavior and effects of nanoparticles in the environment. Environ Pollut. 2009;157:1063–4.

    Article  PubMed  CAS  Google Scholar 

  • Oyanedel-Craver VA, Smith JA. Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment. Environ Sci Technol. 2007;42(3):927–33.

    Article  Google Scholar 

  • Project on Emerging Nanotechnologies (PEN). Consumer products inventory. Washington, D.C.: Woodrow Wilson Institute; 2013. http://www.nanotechproject.org/inventories/consumer/. Accessed 2011

  • Piret J-P, Vankoningsloo S, Mejia J, Noël F, Boilan E, Lambinon F, et al. Differential toxicity of copper (II) oxide nanoparticles of similar hydrodynamic diameter on human differentiated intestinal caco-2 cell monolayers is correlated in part to copper release and shape. Nanotoxicol. 2011;0(0):1–15.

    Google Scholar 

  • Powell JJ, Thoree V, Pele LC. Dietary microparticles and their impact on tolerance and immune responsiveness of the gastrointestinal tract. Br J Nutr. 2007;98:S59–63.

    Article  PubMed  CAS  Google Scholar 

  • Powers K, Palazuelos M, Brown SC, Roberts SM. Characterization of nanomaterials for toxicological evaluation. In: Sahu S, Casciano D, editors. Nanotoxicology: from in vivo and in vitro models to health risks. New York: Wiley; 2009. p. 1–27.

    Google Scholar 

  • Rao AL, Sankar GG. Caco-2 cells: an overview. JPRHC. 2009;1(2):260–75.

    Google Scholar 

  • Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF. Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Sci Technol. 2012;31(1):93–9.

    CAS  Google Scholar 

  • Reijnders L. Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J Clean Prod. 2006;14(2):124–33.

    Article  Google Scholar 

  • Stone V, Johnston H, Schins RPF. Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol. 2009;39(7):613–26.

    Article  PubMed  CAS  Google Scholar 

  • Thubagere A, Reinhard BM. Nanoparticle-induced apoptosis propagates through hydrogen-peroxide-mediated bystander killing: insights from a human intestinal epithelium in vitro model. ACS Nano. 2010;4(7):3611–22.

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Nagesha DK, Selvarasah S, Dokmeci MR, Carrier RL. Toxicity of CdSe nanoparticles in caco-2 cell cultures. J Nanobiotechnol. 2008;6:11.

    Article  CAS  Google Scholar 

  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008;2(10):2121–34.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Chen Y, Westerhoff P, Hristovski K, Crittenden JC. Stability of commercial metal oxide nanoparticles in water. Water Res. 2008;42(8–9):2204–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to acknowledge Dr. DeLisa Fairweather for her advice on the cytokine experiments, Dr. Joe Bressler for his advice about Caco-2 cell lines, and Rebecca Pinekenstein for her help in maintaining the cell lines. This research was supported in part by the National Institute of Environmental Health Sciences (NIEHS) Training Program in Environmental Health Sciences (grant #: T32ES007141), the Osprey Foundation of Maryland, and the Johns Hopkins University Global Water Program.

Declaration of interest

The authors report no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kellogg J. Schwab.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

DOC 2,099 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbott Chalew, T.E., Schwab, K.J. Toxicity of commercially available engineered nanoparticles to Caco-2 and SW480 human intestinal epithelial cells. Cell Biol Toxicol 29, 101–116 (2013). https://doi.org/10.1007/s10565-013-9241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-013-9241-6

Keywords

Navigation