Skip to main content
Log in

A circadian clock regulates sensitivity to cadmium in Paramecium tetraurelia

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The heavy metal cadmium is a dangerous environmental toxicant that can be lethal to humans and other organisms. This paper demonstrates that cadmium is lethal to the ciliated protozoan Paramecium tetraurelia and that a circadian clock modulates the sensitivity of the cells to cadmium. Various concentrations of cadmium were shown to increase the number of behavioral responses, decrease the swimming speed of cells, and generate large vacuole formation in cells prior to death. Cells were grown in either 12-h light/12-h dark or constant dark conditions exhibited a toxic response to 500 μM CdCl2; the sensitivity of the response was found to vary with a 24-h periodicity. Cells were most sensitive to cadmium at circadian time 0 (CT0), while they were least sensitive in the early evening (CT12). This rhythm persisted even when the cells were grown in constant dark. The oscillation in cadmium sensitivity was shown to be temperature-compensated; cells grown at 18°C and 28°C had a similar 24-h oscillation. Finally, phase shifting experiments demonstrated a phase-dependent response to light. These data establish the criteria required for a circadian clock and demonstrate that P. tetraurelia possesses a circadian-influenced regulatory component of the cadmium toxic response. The Paramecium system is shown to be an excellent model system for the study of the effects of biological rhythms on heavy metal toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ando H, Yanagihara H, Sugimoto K, Hayashi Y, Tsuruoka S, Takamura T, et al. Daily rhythms of P-glycoprotein expression in mice. Chronobiol Int. 2005;22:655–65.

    Article  CAS  PubMed  Google Scholar 

  • Aschoff J. Comparative physiology: diurnal rhythms. Annu Rev Physiol. 1963;25:581–600.

    Article  CAS  PubMed  Google Scholar 

  • Bamdad M, Brousseau P, Denizeau F. Identification of a multidrug resistance-like system in Tetrahymena pyriformis: evidence for a new detoxication mechanism in freshwater ciliates. FEBS Lett. 1999;456(3):389–93.

    Article  CAS  PubMed  Google Scholar 

  • Barnett A. Cell division: a second circadian clock system in Paramecium multimicronucleatum. Science. 1969;164:1417–9.

    Article  CAS  PubMed  Google Scholar 

  • Bell-Pederson D, Shinohara ML, Loros J, Dunlap JC. Circadian clock-controlled genes isolated from Neurospora crassa are late-night- to early morning-specific. Proc Natl Acad Sci USA. 1996;93(23):13096–101.

    Article  Google Scholar 

  • Bernal J, Ehrlich B. Guanine nucleotides modulate calcium currents in a marine Paramecium. J Exp Biol. 1996;176:117–33.

    Google Scholar 

  • Bernal J, Ruvalcaba S. Pharmacological prevention of acute lead poisoning in Paramecium. Toxicology. 1996;108(3):165–73.

    Article  CAS  PubMed  Google Scholar 

  • Beyersmann D, Hechtenberg S. Cadmium, gene regulation, and cellular signaling in mammalian cells. Toxicol Appl Pharmacol. 1997;144(2):247–61.

    Article  CAS  PubMed  Google Scholar 

  • Biagioli M, Watjen W, Beyersmann D, Zoncu R, Cappellini C, Ragghianti M, et al. Cadmium-induced apoptosis in murine fibroblasts is suppressed by Bcl-2. Arch Toxicol. 2001;75(6):313–20.

    Article  CAS  PubMed  Google Scholar 

  • Broeks A, Gerrard B, Aliikmetz R, Dean M, Pasternak R. Homologues of the human multidrug resistance genes MRP and MDR contribute to heavy metal resistance in soil nematode Caenorhabditis elegans. EMBO J. 1996;15:6132–43.

    CAS  PubMed  Google Scholar 

  • Bűnning E. The physiological clock. New York: Springer; 1973.

    Google Scholar 

  • Cai L, Cherian MG. Zinc-metallothionein protects from DNA damage induced by radiation better than glutathione and copper- or cadmium-metallothioneins. Toxicol Lett. 2003;136(3):193–8.

    Article  CAS  PubMed  Google Scholar 

  • Callaghan A, Denny N. Evidence for an interaction between p-glycoprotein and cadmium toxicity in cadmium-resistant and -susceptible strains of Drosophila melanogaster. Ecotoxicol Environ Saf. 2002;53:211–3.

    Article  CAS  Google Scholar 

  • Cambar J, Pons M. New trends in chronotoxicology. In: Redfern PH, Lemmer B, editors. Physiology and pharmacology of biological rhythms. Handbook of experimental pharmacology, vol. 127. Berlin: Springer; 1997. p. 557–88.

    Google Scholar 

  • Cambar J, Cal JC, Desmouliere A, Guillemain J. Circadian variations of the mortality of mice due to cadmium sulfate. C R Seances Acad Sci III. 1983;296(20):949–52.

    CAS  PubMed  Google Scholar 

  • Cherian MG, Nordberg M. Cellular adaptation in metal toxicology and metallothionein. Toxicology. 1983;28(1–2):1–15.

    Article  CAS  PubMed  Google Scholar 

  • DeCoursey PJ. Phase control of activity in a rodent. Cold Spring Harb Symp Quant Biol. 1960;25:49–55.

    CAS  PubMed  Google Scholar 

  • Dunlap JC. Molecular bases for circadian clocks. Cell. 1999;96:271–90.

    Article  CAS  PubMed  Google Scholar 

  • Dunlap JC, Loros JL, Decoursey PJ. Chronobiology: biological timekeeping. Sunderland: Sinauer Associates; 2004.

    Google Scholar 

  • Dunlap JC, Loros JJ, Colot HV, Mehra A, Belden WJ, Shi M, et al. A circadian clock in Neurospora: how genes and proteins cooperate to produce a sustained, entrainable, and compensated biological oscillator with a period of about a day. Cold Spring Harb Symp Quant Biol. 2007;72:57–68.

    Article  CAS  PubMed  Google Scholar 

  • Einicker-Lamas M, Morales M, Miranda K, Garcia-Abreu J, Oliveira A, Siva F, et al. P-glycoprotein-like protein contributes to cadmium resistance in Euglena gracilis. J Comp Physiol B. 2003;173:559–64.

    Article  CAS  PubMed  Google Scholar 

  • Forrester LW, Latinwo LM, Fasanya-Odewumi C, Ikediobi C, Abazinge MD, Mbuya O, et al. Comparative studies of cadmium-induced single strand breaks in female and male rats and the ameliorative effect of selenium. Int J Mol Med. 2000;6(4):449–52.

    CAS  PubMed  Google Scholar 

  • Fukushima S. Effects of heavy metals in Paramecium tetraurelia. II. Interactions of cadmium, zinc and calcium. Nippon Eiseigaku Zasshi. 1980;34(6):743–50.

    CAS  PubMed  Google Scholar 

  • Goldwater LJ, Clarkson TW, et al. Cadmium. In: Lee DHK, editor. Metallic contaminants and human health. New York: Academic; 1972. p. 97–124.

    Google Scholar 

  • Halliwell B, Gutteridge JMC. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984;219:1–14.

    CAS  PubMed  Google Scholar 

  • Hasegawa K, Tanakadate A. The Paramecium circadian behavioral rhythm: light phase response curves and entrainment. J Biol Rhythms. 1987;2(4):269–78.

    Article  CAS  PubMed  Google Scholar 

  • Hastings J. Biochemical aspects of rhythms: phase shifting by chemicals. Cold Spring Harb Symp Quant Biol. 1960;25:131–45.

    CAS  PubMed  Google Scholar 

  • Hennessey T. Ion currents of Paramecium: effects of mutations and drugs. In: Anderson P, editor. Evolution of the first nervous systems. New York: Plenum; 1989. p. 215–35.

    Google Scholar 

  • Hinrichsen R, Kung C. Genetic analysis of axonemal mutants in Paramecium tetraurelia defective in their response to calcium. Genet Res. 1984;43:11–20.

    Article  Google Scholar 

  • Hinrichsen R, Schultz J. Paramecium: a model system for the study of excitable cells. Trends Neuroscience. 1988;11:27–32.

    Article  CAS  Google Scholar 

  • Hinrichsen R, Fraga D, Russell C. The regulation of calcium in Paramecium. Adv Second Messenger Phos Res. 1995;30:311–38.

    CAS  Google Scholar 

  • Hrushesky WJ. Circadian timing of cancer chemotherapy. Science. 1985;228:73–5.

    Article  CAS  PubMed  Google Scholar 

  • Johnson CH, Miwa I, Kondo T, Hastings JW. Circadian rhythm of photoaccumulation in Paramecium bursaria. J Biol Rhythms. 1989;4(4):405–15.

    Article  PubMed  Google Scholar 

  • Johnson CH, Nakaoka Y, Miwa I. The effects of altering extracellular potassium ion concentration on the membrane potential and circadian clock of Paramecium bursaria. J Exp Biol. 1994;197:295–308.

    CAS  PubMed  Google Scholar 

  • Johnson CH, Gooch V, Stokes MS. An atlas of phase response curves for circadian and circatidal rhythms. 1997. Electronic file (Microsoft Excel), available at: http://www.cas.vanderbilt.edu/johnsonlab/prcatlas/index.html.

  • Klaassen C, Liu J, Choudhuri S. Metallothionein: an intracellular protein to protectg against cadmium toxicity. Annu Rev Pharmacol Toxicol. 1999;39:267–94.

    Article  CAS  PubMed  Google Scholar 

  • Levi F, Schibler U. Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol. 2007;47:593–628.

    Article  CAS  PubMed  Google Scholar 

  • Liao VH, Dong J, Freedman JH. Molecular characterization of a novel, cadmium-inducible gene from the nematode Caenorhabditis elegans. A new gene that contributes to the resistance to cadmium toxicity. J Biol Chem. 2002;277(44):42049–59.

    Article  CAS  PubMed  Google Scholar 

  • Machemer H, Ogura A. Ion conductances of membranes in ciliated and deciliated Paramecium. J Physiol. 1979;296:49–60.

    CAS  PubMed  Google Scholar 

  • Maret W. The function of zinc metallothionein: a link between cellular zinc and redox state. J Nutr. 2000;130(5S Suppl):1455S–8S.

    CAS  PubMed  Google Scholar 

  • Masters BA, Kelly EJ, Quaife CJ, Brinster RL, Palmiter RD. Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. Proc Natl Acad Sci USA. 1994;91:584–8.

    Article  CAS  PubMed  Google Scholar 

  • Matsubara E, Harada K, Inoue K, Koizumi A. Effects of perfluorinated amphiphiles on backward swimming in Paramecium caudatum. BBRC. 2006;339:459–730.

    Google Scholar 

  • Miwa I, Nagatoshi H, Horie T. Circadian rhythmicity within single cells of Paramecium bursaria. J Biol Rhythms. 1987;2(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  • Miwa I, Izumo T, Sonoda T. Cytoplasm rescues an arrhythmic mutant on the circadian rhythm of mating reactivity in Paramecium bursaria. J Eukaryotic Microbiol. 1996;43(3):231–6.

    Article  CAS  Google Scholar 

  • Othumpangat S, Kashon M, Joseph P. Eukaryotic translation initiation factor 4E is a cellular target for toxicity and death due to exposure to cadmium chloride. J Biol Chem. 2005;280:25162–9.

    Article  CAS  PubMed  Google Scholar 

  • Palmiter RD. The elusive function of metallothioneins. Proc Natl Acad Sci USA. 1998;95(15):8428–30.

    Article  CAS  PubMed  Google Scholar 

  • Piccinni E, Bertaggia D, Santovito G, Miceli C, Kraev A. Cadmium metallothionein gene of Tetrahymena pyriformis. Gene. 1999;234(1):51–9.

    Article  CAS  PubMed  Google Scholar 

  • Pinot F, Kreps SE, Bachelet M, Hainaut P, Bakonyi M, Poola BS. Cadmium in the environment: sources, mechanisms of biotoxicity and biomarkers. Rev Environ Health. 2000;15:299–323.

    CAS  PubMed  Google Scholar 

  • Pittendrigh C. Temporal organization: reflections of a Darwinian clock-watcher. Ann Rev Physiol. 1993;55:17–54.

    Article  Google Scholar 

  • Reisner A, Bucholtz C, Chandler B. Studies on the polyribosomes of Paramecium. II. Effect of divalent cations. Exp Cell Res. 1975;93:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Shimoda R, Achanzar WE, Qu W, Nagamine T, Takagi H, Mori M, et al. Metallothionein is a potential negative regulator of apoptosis. Toxicol Sci. 2003;73(2):294–300.

    Article  CAS  PubMed  Google Scholar 

  • Shuja R, Shakoori A. Identification and cloning of first cadmium metallothionein like gene from locally isolated ciliate, Paramecium sp. Mol Biol Rep. 2009;36:549–60.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian KS, Meranger JE. Diurnal variations in the concentration of cadmium in urine. Clin Chem. 1984;30:1110–1.

    CAS  PubMed  Google Scholar 

  • Sundararaman V, Gupta SK. Cadmium toxicity to Paramecium: a light and electron microscopic study. Indian J Exp Biol. 1990;28(1):74–9.

    CAS  Google Scholar 

  • Tanji K, Irie Y, Uchida Y, Mori F, Satoh K, Mizushima Y, et al. Expression of metallothionein-III induced by hypoxia attenuates hypoxia-induced cell death in vitro. Brain Res. 2003;976(1):125–9.

    Article  CAS  PubMed  Google Scholar 

  • Tokushima H, Okamoto KI, Miwa I, Nakaoka Y. Correlation between circadian periods and cellular activities in Paramecium bursaria. J Comp Physiol [A]. 1994;175(6):767–72.

    CAS  Google Scholar 

  • Waalkes MP, Coogan TP, Barter RA. Toxicological principles of metal carcinogenesis with special emphasis on cadmium. Crit Rev Toxicol. 1992;22:175–201.

    Article  CAS  PubMed  Google Scholar 

  • Wade MJ, Davis BK, Carlisle JS, Klein AK, Valoppi LM. Environmental transformation of toxic metals. Occup Med. 1993;8:574–601.

    CAS  PubMed  Google Scholar 

  • Waisberg M, Joseph P, Hale B, Beyersmann D. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology. 2003;192:95–117.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Suzuki T. Cadmium-induced abnormality in strains of Euglena gracilis: morphological alteration an its prevention by zinc and cyanocobalamin. Comp Biochem Physiol C. 2001;130:29–39.

    Article  CAS  Google Scholar 

  • Watjen W, Cox M, Biagioli M, Beyersmann D. Cadmium-induced apoptosis in C6 glioma cells: mediation by caspase 9-activation. Biometals. 2002;15(1):15–25.

    Article  CAS  PubMed  Google Scholar 

  • Yang PM, Chiu SJ, Lin KA, Lin LY. Effect of cadmium on cell cycle progression in Chinese hamster ovary cells. Chem Biol Interact. 2004;149(2–3):125–36.

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama K, Shunichi A, Sato H, Aono H. Circadian rhythms of seven heavy metals in plasma, erythrocytes and urine in men: observation in metal workers. Ind Health. 2000;38:205–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Kirsten Juhasz for assistance during the course of this work. Also, we thank Dr. Thomas Simmons and the members of the Hinrichsen laboratory for discussions throughout the course of the research. J.T. was supported by the Graduate School of Indiana University of Pennsylvania. R.H. was supported by grants from Indiana University of Pennsylvania and a Faculty Professional Development Council grant from the commonwealth of Pennsylvania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Hinrichsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinrichsen, R.D., Tran, J.R. A circadian clock regulates sensitivity to cadmium in Paramecium tetraurelia . Cell Biol Toxicol 26, 379–389 (2010). https://doi.org/10.1007/s10565-010-9150-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-010-9150-x

Keywords

Navigation