Skip to main content
Log in

Review of Acetic Acid Synthesis from Various Feedstocks Through Different Catalytic Processes

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Acetic acid (AA) has been largely used with a wide range of applications such as a raw material for a synthesis of vinyl acetate monomer, cellulose acetate or acetate anhydrate, acetate ester and a solvent for a synthesis of terephthalic acid and so on. The present paper briefly summarizes the commercialized chemical processes with their Rh or Ir-based catalytic systems in a liquid-phase carbonylation reaction such as Monsanto, Cativa and Acetica processes. In addition, some alternative catalytic systems such as heterogeneous catalysts to produce AA by direct oxidation or indirect carbonylation of dimethyl ether through BP-SaaBre process in a gas-phase reaction to solve some problems such as a difficult separation of homogeneous catalysts in a corrosive reaction medium. Some home-made heterogeneous catalysts such as a rhodium incorporated graphitic carbon nitride (Rh-g-C3N4) and some heterogenized homogeneous catalysts using the supports of tungsten carbide, iron oxide or graphitic carbon nitride containing rhodium complexes were also introduced for the synthesis of AA through a liquid-phase methanol carbonylation reaction to effectively solve the leaching problem of active rhodium metal as well as to mitigate the separation problem of homogeneous catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yoneda N, Kusano S, Yasui M, Pujado P, Wilcher S (2001) Appl Catal A Gen 221:253–265

    Article  CAS  Google Scholar 

  2. Howard MJ, Jones MD, Roberts MS, Taylor SA (1993) Catal Today 18:325–354

    Article  Google Scholar 

  3. Haynes A, Maitlis PM, Morris GE, Sunley GJ, Adams H, Badger PW, Bowers CM, Cook DB, Elliott PIP, Ghaffar T, Green H, Griffin TR, Payne M, Pearson JM, Taylor MJ, Vickers PW, Watt RJ (2004) J Am Chem Soc 126:2847–2861

    Article  CAS  Google Scholar 

  4. Cheung H, Tanke RS, Torrence P (2005) Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  5. Sano K, Uchida H, Wakabayashi S (1999) Catal Surv Jpn 3:55–60

    Article  CAS  Google Scholar 

  6. Haynes A (2010) Adv Catal 53:1–45

    CAS  Google Scholar 

  7. Tessier L, Bordes E, Gubelmann-Bonneau M (1995) Catal Today 24:335–340

    Article  CAS  Google Scholar 

  8. Knifton JF (1985) J Catal 96:439–453

    Article  CAS  Google Scholar 

  9. Xu B, Sun K, Zhu Q, Sachtler WMMH (2000) Catal Today 63:453–460

    Article  CAS  Google Scholar 

  10. Ormsby G, Hargreaves JSJ, Ditzel EJ (2009) Catal Commun 10:1292–1295

    Article  CAS  Google Scholar 

  11. Seoane JL, Boutry P, Montarnal R (1980) J Catal 63:191–200

    Article  CAS  Google Scholar 

  12. Seoane JL, Boutry P, Montarnal R (1980) J Catal 63:182–190

    Article  CAS  Google Scholar 

  13. Thorstein EM, Wilson TP, Young FG, Kasai PH (1978) J Catal 132:116–132

    Article  Google Scholar 

  14. Roy M, Gubelmann-Bonneau M, Ponceblanc H, Volta J-C (1996) Catal Lett 42:93–97

    Article  CAS  Google Scholar 

  15. Fujimoto K, Omata K, Shlkada T, Tominaga H (1983) Ind Eng Chem Prod Res Dev 22:436–439

    Article  CAS  Google Scholar 

  16. Thomas CM, Suss-Fink G (2003) Coord Chem Rev 243:125–142

    Article  CAS  Google Scholar 

  17. Forster D, Singleton TC (1982) J Mol Catal 27:299–314

    Article  Google Scholar 

  18. Sunley GJ, Watson DJ (2000) Catal Today 58:293–307

    Article  CAS  Google Scholar 

  19. Jones JH (2000) Platin Met Rev 44:94–105

    CAS  Google Scholar 

  20. Maitlis PM, Haynes A, Sunleyb GJ, Howard MJ (1996) J Chem Soc Dalton Trans 11:2187–2196

    Article  Google Scholar 

  21. Noriyuki Y, Takeshi M, Joe W, Ben S (1999) Stud Surf Sci Catal 121:93–98

    Article  Google Scholar 

  22. Bristow TC (2015) Korea Patent Application, 10-2015-0096792

  23. Joensen F, Voss B, Dybkjaer I (1997) European Patent Application, EP0801050B1

  24. Joensen F, Voss B, Dybkjaer I (1998) US Patent, US5728871

  25. Wauh KC (1992) Methanol synthesis. Catal Today 15:51–75

    Article  Google Scholar 

  26. Bart JCJ, Sneeden RPA (1987) Catal Today 2:1–124

    Article  CAS  Google Scholar 

  27. Budiman AW, Song SH, Chang TS, Shin CH, Choi MJ (2012) Catal Surv Asia 16:183–197

    Article  CAS  Google Scholar 

  28. Fan M-S, Abdullah AZ, Bhatia S (2009) ChemCatChem 1:192–208

    Article  CAS  Google Scholar 

  29. Ellgen PC, Bhasin MM (1977) US patent, US4014913 A

  30. Ellgen PC, Bhasin MM (1978) US patent, US4096164 A

  31. Bhasin MM, O’connor GL (1976) US patent, US4246186 A

  32. Knifton JF, Lin JJ (1982) US patent, US4366259 A

  33. Xu B, Sachtler WMH (1998) J Catal 180:194–206

    Article  CAS  Google Scholar 

  34. Lin M, Sen A (1994) Nature 368:613–615

    Article  CAS  Google Scholar 

  35. Periana RA, Mironov O, Taube D, Bhalla G, Jones CJ (2003) Science 301:814–818

    Article  CAS  Google Scholar 

  36. Periana RA, Mironov O, Taube D, Bhalla G, Jones CJ (2005) Top Catal 32:169–174

    Article  CAS  Google Scholar 

  37. http://www.petrochemconclave.com/presentation/2013/Mr.JHorler.pdf

  38. Borah BJ, Deb B, Sarmah PP, Dutta DK (2010) J Mol Catal 319:66–70

    Article  CAS  Google Scholar 

  39. Dutta PK, Asiaie R, Akbar SA, Zhug W (1994) Chem Mater 6:1542–1548

    Article  CAS  Google Scholar 

  40. Dutta DK, Chutia P, Sarmah BJ, Borah BJ, Deb B, Woollins JD (2009) J Mol Catal A Chem 300:29–35

    Article  CAS  Google Scholar 

  41. Dutta DK, Woollins JD, Slawin AMZ, Konwar D, Das P, Sharma M, Aucott SM (2003) Dalton Trans 13:2674–2679

    Article  Google Scholar 

  42. Lamb G, Clarke M, Slawin AMZ, Williams B, Key L (2007) Dalton Trans 47:5582–5589

    Article  Google Scholar 

  43. Haasnoot JG (2000) Coord Chem Rev 202:131–185

    Article  Google Scholar 

  44. Merenov AS, Abraham MA (1998) Catal Today 40:397–404

    Article  CAS  Google Scholar 

  45. Uhm SJ, Han SH, Oh JW, Joo OS (1993) Korea Patent Application, 1994-0008742

  46. Uhm SJ, Han SH, Oh JW, Joo OS (1994) European Patent Application, EP0636599A1

  47. Uhm SJ, Han SH, Oh JW, Joo OS (1994) US Patent, US5488143

  48. Merenov AS, Nelson A, Abraham MA (2000) Catal Today 55:91–101

    Article  CAS  Google Scholar 

  49. Fujimoto K, Shikada T, Omata K, Tominaga H (1982) Ind Eng Chem Prod Res Dev 21:429–432

    Article  CAS  Google Scholar 

  50. Liu T-C, Chiu S-J (1994) Ind Eng Chem Prod Res 33:488–492

    Article  CAS  Google Scholar 

  51. Ellis B, Howard MJ, Joyner RW, Reddy KN, Padley MB, Smit WJ (1996) Stud Surf Sci Catal 101:771–779

    Article  CAS  Google Scholar 

  52. Fujimoto K, Shikada T, Omata K, Tominaga H (1984) Chem Lett 13:2047–2050

    Article  Google Scholar 

  53. Park JH, Bae JW, Jang TS, Kim BS (2014) Korea Patent Application, 10-2014-0192058

  54. Park JH, Bae JW, Jeong MH, Jeon SH, Ahn CI (2015) Korea Patent Application, 10-2015-0013791

  55. Park JH, Bae JW (2015) Korea Patent Application, 10-2015-0014575

  56. Park JH, Bae JW, Jang TS, Kim BS (2014) Korea Patent Application, 10-2014-0192057

  57. Bae JW, Jang TS, Kim BS, Park JH, Nam JS (2015) Korea Patent Application, 10-2015-0105818

  58. Cho JM, Jeong MH, Bae JW (2016) Res Chem Intermed 42(1):335–350

    Article  CAS  Google Scholar 

  59. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) Nat Mater 8:76–80

    Article  CAS  Google Scholar 

  60. Wang X, Chen X, Thomas A, Fu X, Antonietti M (2009) Adv Mater 21:1609–1612

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) under Energy Efficiency and Resources Programs with Project Number of 20132010201750. The authors would like to acknowledge the financial support from the National Research Foundation of Korea (NRF) Grant funded by the Korea government (NRF-2014R1A1A2A16055557 and NRF-2016M3D3A1A01913253).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong Wook Bae or Myoung Jae Choi.

Additional information

Anatta Wahyu Budiman and Ji Su Nam have contributed equally in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budiman, A.W., Nam, J.S., Park, J.H. et al. Review of Acetic Acid Synthesis from Various Feedstocks Through Different Catalytic Processes. Catal Surv Asia 20, 173–193 (2016). https://doi.org/10.1007/s10563-016-9215-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-016-9215-9

Keywords

Navigation