Skip to main content

Advertisement

Log in

Advancements in the Conversion of Carbon Dioxide to Cyclic Carbonates Using Metal Organic Frameworks as Catalysts

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Global warming has begun to show its impact on the environment, and it is time to take steps to manage CO2 emissions, so as to regain the balance of carbon cycle. In addition to various capture and sequestration techniques, conversion of CO2 to value added products is high relevant. However, the inertness of CO2 makes catalysts an indispensable part of the process. CO2 undergoes cycloaddition with epoxides to produce cyclic carbonates, which have utility in various applications. Considering the necessity for heterogeneity and activity under ambient conditions, metal organic framework (MOF) catalysts have recently emerged as prospective candidates for cyclic carbonate synthesis. These porous hybrid inorganic–organic crystals are also excellent materials for gas storage and separation, including CO2 gas. Thus, MOFs could efficiently capture CO2 and catalytically convert them to cyclic carbonates. In this review, we discuss the recent advancements in the design of MOF catalysts for cyclic carbonate synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR (2012) Chem Rev 112:724

    Article  CAS  Google Scholar 

  2. Kenarsari SD, Yang D, Jiang G, Zhang S, Wang J, Russell AG, Weif Q, Fan M (2013) RSC Adv 3:22739

    Article  CAS  Google Scholar 

  3. Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreibera A, Muller TE (2012) Energy Environ Sci 5:7281

    Article  CAS  Google Scholar 

  4. Metcalfe IS, North M, Pasqualea R, Thursfield A (2010) Energy Environ Sci 3:212

    Article  CAS  Google Scholar 

  5. Sakakura T, Saito Y, Okano M, Choi JC, Sako T (1998) J Org Chem 63:7095

    Article  CAS  Google Scholar 

  6. Yoshida M, Ihara M (2004) Chem Eur J 10:2886

    Article  CAS  Google Scholar 

  7. Shi F, Deng Y, SiMa T, Peng J, Gu Y, Qiao B (2003) Angew Chem Int Ed 42:3257

    Article  CAS  Google Scholar 

  8. Zhang Z, Xie Y, Li W, Hu S, Song J, Jiang T, Han B (2008) Angew Chem Int Ed 47:1127

    Article  CAS  Google Scholar 

  9. Srivastava R, Manju MD, Srinivas D, Ratnasamy P (2004) Catal Lett 97:41

    Article  CAS  Google Scholar 

  10. Caló V, Nacci A, Monopoli A, Fanizzi A (2002) Org Lett 4:2561

    Article  Google Scholar 

  11. Kim DW, Roshan R, Tharun J, Cherian A, Park DW (2013) Korean J Chem Eng 30:1973

    Article  CAS  Google Scholar 

  12. Schlichte K, Kratzke T, Kaskel S (2004) Micro Meso Mater 73:81

    Article  CAS  Google Scholar 

  13. Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID (1999) Science 283:1148

    Article  CAS  Google Scholar 

  14. Rieter WJ, Taylor KML, Lin W (2007) J Am Chem Soc 129:9852

    Article  CAS  Google Scholar 

  15. Millward AR, Yaghi OM (2005) J Am Chem Soc 127:17998

    Article  CAS  Google Scholar 

  16. Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regí M, Sebban M, Taulelle F, Férey G (2008) J Am Chem Soc 130:6774

    Article  CAS  Google Scholar 

  17. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Ferey G, Morris RE, Serre C (2012) Chem Rev 112:1232

    Article  CAS  Google Scholar 

  18. Bisht KK, Parmar B, Rachuri Y, Kathalikattil AC, Suresh E (2015) Cryst Eng Commun. doi:10.1039/C5CE00776C

    Google Scholar 

  19. Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S (2007) J Am Chem Soc 129:2607

    Article  CAS  Google Scholar 

  20. Alaerts L, Séguin E, Poelman H, Thibault-Starzyk F, Jacobs PA, Vos DED (2006) Chem Eur J 12:7353

    Article  CAS  Google Scholar 

  21. Gándara F, Gomez-Lor B, Gutiérrez-Puebla E, Iglesias M, Monge MA, Proserpio DM, Snejko N (2008) Chem Mater 20:72

    Article  Google Scholar 

  22. Dewa T, Saiki T, Aoyama Y (2001) J Am Chem Soc 123:502

    Article  CAS  Google Scholar 

  23. Hu A, Ngo HL, Lin W (2003) Angew Chem Int Ed 42:6000

    Article  CAS  Google Scholar 

  24. Pan L, Liu H, Lei X, Huang X, Olson DH, Turro NJ, Li J (2003) Angew Chem Int Ed 42:542

    Article  CAS  Google Scholar 

  25. Song J, Zhang Z, Hu S, Wu T, Jiang T, Han B (2009) Green Chem 11:1031

    Article  CAS  Google Scholar 

  26. Kleist W, Jutz F, Maciejewski M, Baiker A (2009) Eur J Inorg Chem 24:3552

    Article  Google Scholar 

  27. Cho HY, Yang DA, Kim J, Jeong SY, Ahn WS (2012) Catal Today 185:35

    Article  CAS  Google Scholar 

  28. Yang DA, Cho HY, Kim J, Yang ST, Ahn WS (2012) Energy Environ Sci 5:6465

    Article  CAS  Google Scholar 

  29. Zalomaeva OV, Maksimchuk NV, Chibiryaev AM, Kovalenko KA, Fedin VP, Balzhinimaev BS (2013) J Energy Chem 22:130

    Article  CAS  Google Scholar 

  30. Kim SN, Kim J, Kim HY, Cho HY, Ahn WS (2013) Catal Today 204:85

    Article  CAS  Google Scholar 

  31. Lescouet T, Chizallet C, Farrusseng D (2012) ChemCatChem 4:1725

    Article  CAS  Google Scholar 

  32. Guillerm V, Weseliński ŁJ, Belmabkhout Y, Cairns AJ, D’Elia V, Wojtas Ł, Adil K, Eddaoudi M (2014) Nat Chem 6:673

    CAS  Google Scholar 

  33. Macias EE, Ratnasamy P, Carreon MA (2012) Catal Today 198:215

    Article  CAS  Google Scholar 

  34. Kim J, Kim SN, Jang HG, Seo G, Ahn WS (2013) Appl Catal A: Gen 453:175

    Article  CAS  Google Scholar 

  35. Miralda CM, Macias EE, Zhu M, Ratnasamy P, Carreon MA (2012) ACS Catal 2:180

    Article  CAS  Google Scholar 

  36. Jose T, Hwang Y, Kim DW, Kim M, Park DW (2015) Catal Today 245:61

    Article  CAS  Google Scholar 

  37. Tharun J, Mathai G, Kathalikkattil AC, Roshan R, Won YS, Cho SJ, Chang JS, Park DW (2015) ChemPlusChem 80:715

    Article  CAS  Google Scholar 

  38. Yang L, Yu L, Diao G, Sun M, Cheng G, Chen S (2014) J Mol Catal A 392:278

    Article  CAS  Google Scholar 

  39. Kathalikkattil AC, Roshan R, Tharun J, Soek HG, Ryu HS, Park DW (2014) ChemCatChem 6:284

    Article  CAS  Google Scholar 

  40. Gao WY, Wojtas L, Ma S (2014) Chem Commun 50:5316

    Article  CAS  Google Scholar 

  41. Gao WY, Chen Y, Niu Y, Williams K, Cash L, Perez PJ, Wojtas L, Cai J, Chen YS, Ma S (2014) Angew Chem Int Ed 53:2615

    Article  CAS  Google Scholar 

  42. Ren Y, Shi Y, Chen J, Yang S, Qi C, Jiang H (2013) RSC Adv 3:2167

    Article  CAS  Google Scholar 

  43. Ren Y, Cheng X, Yang S, Qi C, Jiang H, Mao Q (2013) Dalton Trans 42:9930

    Article  CAS  Google Scholar 

  44. Feng D, Chung WC, Wei Z, Gu ZY, Jiang HL, Chen YP, Darensbourg DJ, Zhou HC (2013) J Am Chem Soc 135:17105

    Article  CAS  Google Scholar 

  45. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Omar MY (2002) Science 295:469

    Article  CAS  Google Scholar 

  46. Sumida K, Brown CM, Herm ZR, Chavan S, Bordiga S, Long JR (2011) Chem Commun 47:1157

    Article  CAS  Google Scholar 

  47. Suslick KS, Choe SB, Cichowlas AA, Grinstaff MW (1991) Nature 353:414

    Article  CAS  Google Scholar 

  48. Beyzavi MH, Klet RC, Tussupbayev S, Borycz J, Vermeulen NA, Cramer CJ, Stoddart JF, Hupp JT, Farha OK (2014) J Am Chem Soc 136:15861

    Article  CAS  Google Scholar 

  49. Kathalikkattil AC, Kim DW, Tharun J, Soek HG, Roshan R, Park DW (2014) Green Chem 16:1607

    Article  CAS  Google Scholar 

  50. Feller RK, Cheetham AK (2008) Dalton Trans 15:2034

    Article  Google Scholar 

  51. Kathalikkattil AC, Park DW (2013) J Nanosci Nanotechnol 13:3

    Article  Google Scholar 

  52. Kim YJ, Park DW (2012) J Nanosci Nanotechnol 12:1

    Article  Google Scholar 

  53. http://www.epa.gov/climatechange/ghgemissions/global.html

  54. Zhu M, Srinivas D, Bhogeswararao S, Ratnsamy P, Carreon MA (2013) Catal Commun 32:36

    Article  CAS  Google Scholar 

  55. Zalomaeva OV, Chibiryaev AM, Kovalenko KA, Kholdoeva OA, Balzhin-imaev BS, Fedin VP (2013) J Catal 298:179

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Global Frontier Hybrid Interface Materials (GFHIM 2014043321) and Basic Research Program (2014-2055412) through the National Research Foundation of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Won Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kathalikkattil, A.C., Babu, R., Tharun, J. et al. Advancements in the Conversion of Carbon Dioxide to Cyclic Carbonates Using Metal Organic Frameworks as Catalysts. Catal Surv Asia 19, 223–235 (2015). https://doi.org/10.1007/s10563-015-9196-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-015-9196-0

Keywords

Navigation