Skip to main content
Log in

Low-Temperature Synthesis of Ruddlesden–Popper Type Layered Perovskite LaxCa3−xMn2O7 for Methane Combustion

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

In comparison to the conventional high temperature (≥1,300 °C) preparation conditions, a series of Ruddlesden–Popper (R–P) type layered perovskite LaxCa3−xMn2O7 (x = 0.8, 1.0, 1.2, 1.5, 2.0, 2.5, and 3.0) were synthesized at 700 °C by an improved method based on the strategy involving the “inductive effect of Cl”. XRD results revealed the unitary R–P type layered perovskite structure in the samples of x = 0.8, 1.0, 1.2, and 3.0. While in the samples of x = 1.5, 2.0, and 2.5, the layered perovskite phase and lanthanum oxide phase coexisted, which resulted in their poor redox properties. XPS and H2-TPR results demonstrated that the redox properties of LaxCa3−xMn2O7 were correlated with its structural integrity and purity and influenced by the x value. The sample of x = 1.2 gave the highest methane combustion activity with T 50 = 449 °C, and the sample of x = 2.0 showed the lowest activity with T 50 = 538 °C, which was in accordance with the XPS and H2-TPR results. The specific surface areas of LaxCa3−xMn2O7 depended on the x value monotonically, and the sample of x = 0.8 presented the highest surface area value (33.59 m2 g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Zhu J, Thomas A (2009) Appl Catal B 92:225

    Article  CAS  Google Scholar 

  2. Royer S, Duprez D (2011) ChemCatChem 3:24

    Article  CAS  Google Scholar 

  3. Mogensen M, Lybye D, Bonanos N, Hendriksen P, Poulsen F (2004) Solid State Ionics 174:279

    Article  CAS  Google Scholar 

  4. Maluf SS, Nascente PAP, Afonso CRM, Assaf EM (2012) Appl Catal A 413:85

    Article  Google Scholar 

  5. Fujimoto J, Masuda K, Hanaki Y, Munakata F (2011) J Ceram Soc Jpn 119:85

    Article  CAS  Google Scholar 

  6. Ruddlesden SN, Popper P (1958) Acta Crystallogr 11:54

    Article  CAS  Google Scholar 

  7. Pena MA, Fierro JLG (2001) Chem Rev 101:1981

    Article  CAS  Google Scholar 

  8. Centi G, Perathoner S (2008) Micropor Mesopor Mater 107:3

    Article  CAS  Google Scholar 

  9. Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz JG, Lichtenberg F (1994) Nature 372:532

    Article  CAS  Google Scholar 

  10. Jung K-N, Lee J-I, Im WB, Yoon S, Shin K-H, Lee J-W (2012) Chem Commun 48:9406

    Article  CAS  Google Scholar 

  11. Moritomo Y, Asamitsu A, Kuwahara H, Tokura Y (1996) Nature 380:141

    Article  CAS  Google Scholar 

  12. Asano H, Hayakawa J, Matsui M (1997) Appl Phys Lett 70:2303

    Article  CAS  Google Scholar 

  13. Neiner D, Spinu L, Golub V, Wiley JB (2006) Chem Mater 18:518

    Article  CAS  Google Scholar 

  14. Li Y, Chen G, Zhang H, Li Z, Sun J (2008) J Solid State Chem 181:2653

    Article  CAS  Google Scholar 

  15. Kanade KG, Baeg J-O, Kong K-j, Kale BB, Lee SM, Moon S-J, Lee CW, Yoon S (2008) Int J Hydrogen Energy 33:6904

    Article  CAS  Google Scholar 

  16. Hur NH, Chi EO, Kwon YU, Yu J, Kim JT, Park YK, Park JC (1999) Solid State Commun 112:61

    Article  CAS  Google Scholar 

  17. Murata T, Terai T, Fukuda T, Kakeshita T (2006) J Magn Magn Mater 303:138

    Article  CAS  Google Scholar 

  18. Tsujimoto Y, Li JJ, Yamaura K, Matsushita Y, Katsuya Y, Tanaka M, Shirako Y, Akaogi M, Takayama-Muromachi E (2011) Chem Commun 47:3263

    Article  CAS  Google Scholar 

  19. Zarur AJ, Ying JY (2000) Nature 403:65

    Article  CAS  Google Scholar 

  20. McCarty JG (2000) Nature 403:35

    Article  CAS  Google Scholar 

  21. Chandler CD, Roger C, Hampden-Smith MJ (1993) Chem Rev 93:1205

    Article  CAS  Google Scholar 

  22. Gopalakrishnan J (1995) Chem Mater 7:1265

    Article  CAS  Google Scholar 

  23. Aguiar EC, Ramirez MA, Moura F, Varela JA, Longo E, Simoes AZ (2013) Ceram Int 39:13

    Article  CAS  Google Scholar 

  24. Shao Z, Zhou W, Zhu Z (2012) Prog Mater Sci 57:804

    Article  CAS  Google Scholar 

  25. Modeshia DR, Walton RI (2010) Chem Soc Rev 39:4303

    Article  CAS  Google Scholar 

  26. Du X, Zou G, Zhang Y, Wang X (2013) J Mater Chem A 1:8411

    Article  CAS  Google Scholar 

  27. Basith MA, Hoque SM, Shahparan M, Hakim MA, Huq M (2007) Phys B 395:126

    Article  CAS  Google Scholar 

  28. Asano H, Hayakawa J, Matsui M (1996) Appl Phys Lett 68:3638

    Article  CAS  Google Scholar 

  29. Merino NA, Barbero BP, Grange P, Cadus LE (2005) J Catal 231:232

    Article  CAS  Google Scholar 

  30. Barbero BP, Gamboa JA, Cadus LE (2006) Appl Catal B 65:21

    Article  CAS  Google Scholar 

  31. Batis NH, Delichere P, Batis H (2005) Appl Catal A 282:173

    Article  CAS  Google Scholar 

  32. Kahoula A, Hammouchea A, NaÃamounea F, Chartierb P, Poilleratb G, Koenigb JF (2000) Mater Res Bull 35:1955

    Article  Google Scholar 

  33. Lee YN, Lago RM, Fierro JLG, González J (2001) Appl Catal A 215:245

    Article  CAS  Google Scholar 

  34. Chen J, Shen M, Wang X, Qi G, Wang J, Li W (2013) Appl Catal B 134:251

    Article  Google Scholar 

  35. Tabata K, Hirano Y, Suzuki E (1998) Appl Catal A 170:245

    Article  CAS  Google Scholar 

  36. Ponce S, Peña MA, Fierro JLG (2000) Appl Catal B 24:193

    Article  CAS  Google Scholar 

  37. Tang X, Li Y, Huang X, Xu Y, Zhu H, Wang J, Shen W (2006) Appl Catal B 62:265

    Article  CAS  Google Scholar 

  38. Yakovleva IS, Isupova LA, RogovV A, Sadykov VA (2008) Kinet Catal 49:261

    Article  CAS  Google Scholar 

  39. Yang D, Wang L, Sun Y, Zhou K (2010) J Phys Chem C 114:8926

    Article  CAS  Google Scholar 

  40. Arney D, Fuoco L, Boltersdorf J, Maggard PA (2012) J Am Ceram Soc 96:1158

    Article  Google Scholar 

  41. Huang Y, Wei Y, Fan L, Huang M, Lin J, Wu J (2009) Int J Hydrogen Energy 34:5318

    Article  CAS  Google Scholar 

  42. Choudhary TV, Banerjee S, Choudhary VR (2002) Appl Catal A 234:1

    Article  CAS  Google Scholar 

  43. O’Connell M, Norman AK, Huttermann CF, Morris MA (1999) Catal Today 47:123

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guojun Zou or Xiaolai Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Zou, G. & Wang, X. Low-Temperature Synthesis of Ruddlesden–Popper Type Layered Perovskite LaxCa3−xMn2O7 for Methane Combustion. Catal Surv Asia 19, 17–24 (2015). https://doi.org/10.1007/s10563-014-9178-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-014-9178-7

Keywords

Navigation