Skip to main content
Log in

Noble-Metal-Free Copper Nanoparticles/Reduced Graphene Oxide Composite: A New and Highly Efficient Catalyst for Transformation of 4-Nitrophenol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A noble-metal-free reduced graphene oxide composite, copper nanoparticles (Cu NPs) loaded reduced graphene oxide (Cu/RGO), was prepared via a one-step in-situ reduction method. Furthermore, the catalytic activity of the composite for reduction of 4-nitrophenol (4-NP) was investigated. The results showed that the composite was a highly efficient, stable and low-cost catalyst for transformation of 4-NP. In the composite, Cu NPs acted as the cocatalyst and the RGO acted as the substance of electron transfer. The catalytic mechanism was also suggested.

Graphical Abstract

Copper nanoparticles loaded reduced graphene oxide (Cu/RGO) was prepared via a one-step in-situ reduction method. The Cu/RGO composite exhibited high catalytic activity and good recycle stability for treatment and transformation of 4-nitrophenol. Compared with the similar catalysts, the Cu/RGO composite is a cheaper, stable and highly efficient in practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wijker RS, Kurt Z, Spain JC, Bolotin J, Zeyer J, Hofstetter TB (2013) Environ Sci Technol 47:14185

    Article  CAS  Google Scholar 

  2. Shen JY, Zhang YY, Xu XP, Hua CX, Sun XY, Li JS, Mu Y, Wang LJ (2013) Water Res 47:5511

    Article  CAS  Google Scholar 

  3. Boga C, Delpivo C, Ballarin B, Morigi M, Galli S, Micheletti G, Tozzi S (2013) Dyes Pigments 97:9

    Article  CAS  Google Scholar 

  4. Gu S, Wunder S, Lu Y, Ballauff M (2014) J Phys Chem C 118:18618

    Article  CAS  Google Scholar 

  5. Chen XM, Cai ZX, Chen X, Oyama M (2014) J Mater Chem A 2:5668

    Article  CAS  Google Scholar 

  6. Nemanashi M, Meijboom R (2016) Catal Commun 83:53

    Article  CAS  Google Scholar 

  7. Astruc D, Lu F, Aranzaes JR (2005) Angew Chem Int Ed 44:7852

    Article  CAS  Google Scholar 

  8. Li Y, Cao Y, Xie J, Jia D, Qin H, Liang Z (2015) Catal Commun 58:21

    Article  CAS  Google Scholar 

  9. Zhu CZ, Han L, Hu P, Dong SJ (2012) Nanoscale 4:1641

    Article  CAS  Google Scholar 

  10. Wang H, Dong Z, Na C (2013) ACS Sustain Chem Eng 1:746

    Article  CAS  Google Scholar 

  11. Tajabadi MT, Sookhakian M, Zalnezhad E, Yoon GH, Hamouda AMS, Azarang M, Basirun WJ, Alias Y (2016) Appl Surf Sci 386:418

    Article  CAS  Google Scholar 

  12. Edwards RS, Coleman KS (2013) Nanoscale 5:38

    Article  CAS  Google Scholar 

  13. Lu WB, Ning R, Qin XY, Zhang YW, Chang GH, Liu S, Luo YL, Sun XP (2011) J Hazard Mater 197:320

    Article  CAS  Google Scholar 

  14. Blandez JF, Esteve-Adell I, Alvaro M, García H (2015) Catal Sci Technol 5:1969

    Article  CAS  Google Scholar 

  15. Tian Y, Liu Y, Pang F, Wang F, Zhang X (2015) Colloids Surf A 464:96

    Article  CAS  Google Scholar 

  16. Yu JG, Ran JR (2011) Energy Environ Sci 4:1364

    Article  CAS  Google Scholar 

  17. Huang C, Ye W, Liu Q, Qiu X (2014) ACS Appl Mater Interfaces 6:14469

    Article  CAS  Google Scholar 

  18. Ma Y, Ni Y, Guo F, Xiang N (2015) Cryst Growth Des 15:2243

    Article  CAS  Google Scholar 

  19. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tou JM (2010) ACS Nano 4:4806

    Article  CAS  Google Scholar 

  20. Yang JL, Shen XP, Ji ZY, Zhou H, Zhu GX, Chen KM (2015) Ceram Int 41:4056

    Article  CAS  Google Scholar 

  21. Ai ZH, Zhang LZ, Lee SC, Ho WK (2009) J Phys Chem C 113:20896

    Article  CAS  Google Scholar 

  22. Li J, Liu CY, Liu Y (2012) J Mater Chem 22:8426

    Article  CAS  Google Scholar 

  23. Wang ZM, Xu CL, Gao GQ, Li X (2014) RSC Adv 4:13644

    Article  CAS  Google Scholar 

  24. Bai S, Shen XP, Zhu GX, Li MZ, Xi HT, Chen KM (2012) ACS Appl Mater Interfaces 4:2378

    Article  CAS  Google Scholar 

  25. Yeh CC, Chen DH (2014) Appl Catal B 150–151:298

    Article  Google Scholar 

  26. Yang JL, Shen XP, Zhu GX, Ji ZY, Zhou H (2014) RSC Adv 4:386

    Article  CAS  Google Scholar 

  27. Yang JL, Shen XP, Zhu GX, Zhou H, Yuan AH (2012) J Mater Chem 22:3471

    Article  Google Scholar 

  28. Yang JL, Shen XP, Ji ZY, Zhou H, Zhu GX, Chen KM (2014) Appl Surf Sci 316:575

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Innovation Program of Shanghai Municipal Education Commission (No. 15ZZ096) and the National Natural Science Foundation of China (Nos. 21301118, 21305092 and 21371070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangqing Li.

Additional information

Lixia Qin, and Honglei Xu have contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 925 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Xu, H., Zhu, K. et al. Noble-Metal-Free Copper Nanoparticles/Reduced Graphene Oxide Composite: A New and Highly Efficient Catalyst for Transformation of 4-Nitrophenol. Catal Lett 147, 1315–1321 (2017). https://doi.org/10.1007/s10562-017-2038-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2038-0

Keywords

Navigation