Skip to main content
Log in

Alkaline Protease Production Using Response Surface Methodology, Characterization and Industrial Exploitation of Alkaline Protease of Bacillus subtilis sp.

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Bacterial proteases are considered potential candidates for industrial and biotechnological applications. In the present study, the influence of various parameters on an in-house isolated alkaline protease was investigated through central composite design from a well-known response surface methodology technique. A high level of alkaline protease productivity up to 8.9-folds was achieved from a novel strain of Bacillus subtilis isolated from local Tannery, Lahore Distt. (Pakistan). The purification profile revealed 8.48-fold increase to homogeneity by ammonium sulfate fractionation and Sephadex G-100-based gel filtration chromatography. The purified fraction was identified as a monomeric with apparent molecular weight of 15 kDa on sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The catalytic characterization was performed with various substrates using Michaelis–Menten equation. The alkaline protease remained optimally active within a broader pH range of 8–12 having a half-life of 37.8 min at 87 °C, along with a maximum velocity (Vmax) of 200 IU/mL/min and 0.090 mg/mL Michaelis constants. Moreover, a complete de-staining and dehairing were recorded within the short incubation period. In conclusion, the data thus obtained in this study suggest a high potential for enzymatic treatment in an industrial setting.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Naidu KSB, Devi KL (2005) J Biotecnol 4:724–726

    CAS  Google Scholar 

  2. Geethanjali S, Subash A (2011) World J Fish Mar Sci 3:88–95

    CAS  Google Scholar 

  3. Rathakrishnan P, Nagarajan P, Kannan RR (2012) Int J Chem Tech Res 4:749–760

    CAS  Google Scholar 

  4. Joo HS, Kumar CG, Park GC, Paik SR, Chang CS (2002) Proc Biochem 38:155–159

    Article  CAS  Google Scholar 

  5. Ahmed I, Zia MA, Iftikhar T, Iqbal HMN (2011) BioRes 6(4):href="tel:4505–4522">4505–4522

    CAS  Google Scholar 

  6. Kamal S, Rehman S, Iqbal HMN (2016) Environ Prog Sust Energy. doi:10.1002/ep.12447

    Google Scholar 

  7. Betty AF, Daniel FS, Alice SW (2002) Bailey and Scott’s diagnostic microbiology. 11th Ed. Mosby Inc, St. Louis.

    Google Scholar 

  8. Babu SI, Srinu BG, Kumar KN, Kumari SK, Yugandhar MN, Raju K (2005) Int J Chem Sci 4:951–958

    Google Scholar 

  9. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  10. Zambare V, Nilegaonkar S, Kanekar P (2010) IIOAB J 1(4):18–21

    CAS  Google Scholar 

  11. Asgher M, Aslam B, Iqbal HMN (2013) Chin J Catal 34(9):1756–1761

    Article  CAS  Google Scholar 

  12. Bilal M, Asgher M, Iqbal HMN, Hu H, Zhang X (2016) Catal Lett 146(11):href="tel:2221–2228">2221–2228

    Article  CAS  Google Scholar 

  13. Asker MMS, Manal GM, Khalid ES, Mohamed SAA (2013) J Gene Eng Biotechnol 11:103–109

    Article  Google Scholar 

  14. Krishnaveni K, Mukeshkumar DJ, Balakumaran MD, Ramesh S, Kalaichelvan PT (2012) Der Pharmacia Lett 4:98–109

    CAS  Google Scholar 

  15. Lakshmi G, Prasad NN (2015) Adv Biol Res 9:15–23

    Google Scholar 

  16. Iqbal HMN, Asgher M, Bhatti HN (2011) BioRes 6(2):1273–1287

    CAS  Google Scholar 

  17. Palsaniya R, Mishra R, Beejawat R, Sethi S, Gupta BL (2012) J Microbiol Biotechnol Res 2:858–865

    CAS  Google Scholar 

  18. Iqbal HMN, Kyazze G, Keshavarz T (2013) BioRes 8(2):href="tel:3157–3176">3157–3176

    Article  Google Scholar 

  19. Madhavi J, Srilakshmi J, Raghavendra MVR, Sambasiva KRSR (2011) Int J Biosci Biotechnol 4:11–26

    Google Scholar 

  20. Padmapriya M, Williams BC (2012) J Microbiol Biotechnol Res 2(4):612–618

    Google Scholar 

  21. Silva CRD, Delatorre AB, Martins MLL (2007) Braz J Microbiol 38(2):253–258

    Google Scholar 

  22. Wilson P, Remigio Z (2012) Afr J Microbiol Res 27:href="tel:5542–5551">5542–5551

    Google Scholar 

  23. Kaur M, Dhillon S, Chaudhary K, Singh R (1998) Ind J Microbiol 38(2):63–67

    Google Scholar 

  24. Thangam EB, Rajkumar GS (2002) Biotechnol Appl Biochem 35(2):149–154

    Article  CAS  Google Scholar 

  25. Jaswal RK, Kocher GD (2007) Internet J Microbiol 4(1):162–166

    Google Scholar 

  26. Kanekar PP, Nilegaonkar SS, Sarnaik SS, Kelkar AS (2002) Biores Technol 85(1):87–93

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is based on “Kinetic study and industrial application of protease” funded by Higher Education Commission of Pakistan (PM-IPFP/HRD/HEC/2012/3556). The financial support provided by HEC is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz M. N. Iqbal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict or competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, F., Kamal, S., Rehman, S. et al. Alkaline Protease Production Using Response Surface Methodology, Characterization and Industrial Exploitation of Alkaline Protease of Bacillus subtilis sp.. Catal Lett 147, 1204–1213 (2017). https://doi.org/10.1007/s10562-017-2017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2017-5

Keywords

Navigation