Skip to main content

Advertisement

Log in

Aqueous Grafting Ionic Liquid on Graphene Oxide for CO2 Cycloaddition

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, a facile and environment-friendly approach was developed to immobilize water-soluble imidazolium- and pyridinium-based ionic liquids (ILs), i.e. [SmIm]X (X = Cl and I) and [SPy]I, on graphene oxide (GO) sheets in aqueous medium by controlling the grafting temperature. Several characterizations including OEA, FT-IR and XPS techniques have been applied to investigate the effects of the grafting temperature on the preparation for GO-ILs in aqueous medium. As-prepared composites were employed as heterogeneous catalysts for CO2 cycloaddition. Results showed that the amount of [SmIm]I on GO sheets reached a high level (about 1.7 mmol/g GO) under the mild temperature (i.e. 40–60 °C), owing to the inhibition of the self-condensations among ILs molecules in water under the mild temperature. The resulting composites exhibited excellent catalytic activity to CO2 cycloaddition, affording the maximum conversion of propylene oxide (PO) as about 93% in 4 h, much higher than that on [SmIm]I. It could be explained that the abundant hydrogen bonding donor (hydroxyl groups) on GO sheets assisted in the ring opening of PO, which promoted the reaction. These heterogeneous catalysts could be reused for at least five runs without significant loss in activity, implying the stable and reusable capability of as-prepared catalysts. The aqueous grafting mechanism was proposed here, which went through a two-step reaction. ILs with silane coupling agent are firstly hydrolyzed to silanol in water, and grafting reaction then happens by removing H2O molecules under the mild temperature due to the low activation energy for dehydration. It differs greatly from the traditional grafting mechanism in organic solvents, which involves the direct dealcoholization under the high temperature because of the high activation energy for the reaction.

Graphical Abstract

Water-soluble [SmIm]I were efficiently grafted on GO sheets in water under the mild temperature (30–60 °C); while the predominant self-condesation happened among [SmIm]I molecules under the high temperature (beyond 60 °C) in comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Criado A, Melchionna M, Marchesan S, Prato M (2015) Angew Chem Int Ed 54:10734–10750

    Article  CAS  Google Scholar 

  2. McCrary PD, Beasley PA, Alaniz SA, Griggs CS, Frazier RM, Rogers RD (2012) Angew Chem Int Ed 51:9784–9787

    Article  CAS  Google Scholar 

  3. Giernoth R (2010) Angew Chem Int Ed 49:2834–2839

    Article  CAS  Google Scholar 

  4. Xin BW, Hao JC (2014) Chem Soc Rev 43:7171–7187

    Article  CAS  Google Scholar 

  5. Kerscher B, Appel A, Thomann R, Mülhaupt R (2013) Macromolecules 46:4395–4402

    Article  CAS  Google Scholar 

  6. Miao JM, Wan H, Guan GF (2011) Catal Commun 12:353–356

    Article  CAS  Google Scholar 

  7. Watile RA, Deshmukh KM, Dhake KP, Bhanage BM (2012) Catal Sci Technol 2:1051–1055

    Article  CAS  Google Scholar 

  8. Han L, Li H, Choi SJ, Park MS, Lee SM, Kim YJ, Park DW (2012) Appl Catal A 429:67–72

    Article  Google Scholar 

  9. Cheng W, Chen. X, Sun J, Wang J, Zhang S (2013) Catal Today 200:117–124

    Article  CAS  Google Scholar 

  10. Vangeli OC, Romanos GE, Beltsios KG, Fokas D, Kouvelos EP, Stefanopoulos KL, Kanellopoulos NK (2010) J Phys Chem B 114:6480–6491

    Article  CAS  Google Scholar 

  11. Kim DW, Kim CW, Koh JC, Park DW (2010) J Ind Eng Chem 16:474–478

    Article  CAS  Google Scholar 

  12. Xie Y, Zhang ZF, Jiang T, He JL, Han BX, Wu TB, Ding KL (2007) Angew Chem Int Ed 46:7255–7258

    Article  CAS  Google Scholar 

  13. Lan DH, Chen L, Au CT, Yin SF (2015) Carbon 93:22–31

    Article  CAS  Google Scholar 

  14. Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS (2009) Nano Lett 9:1593–1597

    Article  CAS  Google Scholar 

  15. Xu J, Xu M, Wu J, Wu H, Zhang WH, Li YX (2015) RSC Adv 5:72361–72368

    Article  CAS  Google Scholar 

  16. Zhang W, He P, Wu S, Xu J, Li Y, Zhang G, Wei X (2016) Appl Catal A 509:111–117

    Article  CAS  Google Scholar 

  17. Pyun J (2011) Angew Chem Int Ed 50:46–48

    Article  CAS  Google Scholar 

  18. Eigler S, Hirsch A (2014) Angew Chem Int Ed 53:7720–7738

    Article  CAS  Google Scholar 

  19. Udayakumar S, Lee M-K, Shim H-L, Park D-W (2009) Appl Catal A 365:88–95

    Article  CAS  Google Scholar 

  20. Cho H-J, Kwon H-M, Tharun J, Park D-W (2010) J Ind Eng Chem 16:679–683

    Article  CAS  Google Scholar 

  21. Zhao H, Yu N, Ding Y, Tan R, Liu C, Yin D, Qiu H, Yin D (2010) Micropor Mesopor Mater 136:10–17

    Article  CAS  Google Scholar 

  22. Lin Y, Jin J, Song M (2011) J Mater Chem 21:3455–3461

    Article  CAS  Google Scholar 

  23. Kazerooni H, Nassernejad B (2014) RSC Adv 4:34604–34609

    Article  CAS  Google Scholar 

  24. Movahed SK, Esmatpoursalmani R, Bazgir A (2014) RSC Adv 4:14586–14591

    Article  CAS  Google Scholar 

  25. Luo J, Cote LJ, Tung VC, Tan ATL, Goins PE, Wu J, Huang J (2010) J Am Chem Soc 132:17667–17669

    Article  CAS  Google Scholar 

  26. Cheng C, Li D (2013) Adv Mater 25:13–30

    Article  CAS  Google Scholar 

  27. Hou SF, Su SJ, Kasner ML, Shah P, Patel K, Madarang C (2010) J Chem Phys Lett 501:68–74

    Article  CAS  Google Scholar 

  28. Yang HQ, Han XJ, Li G, Wang YW (2009) Green Chem 11:1184–1193

    Article  CAS  Google Scholar 

  29. Wang C, Chen Y, Zhuo K, Wang J (2013) Chem Commun 49:3336–3338

    Article  CAS  Google Scholar 

  30. Sun J, Wang JQ, Cheng WG, Zhang JX, Li XH, Zhang SJ, She YB (2012) Green Chem 14:654–660

    Article  CAS  Google Scholar 

  31. Wang X, Zhou Y, Guo Z, Chen G, Li J, Shi Y, Liu Y, Wang J (2015) Chem Sci 6:6916–6924

    Article  CAS  Google Scholar 

  32. D’Elia V, Dong H, Rossini AJ, Widdifield CM, Vummaleti SVC, Minenkov Y, Poater A, Abou-Hamad E, Pelletier JDA, Cavallo L, Emsley L, Basset J (2015) J Am Chem Soc 137:7728–7739

    Article  Google Scholar 

  33. Xu J, Wu F, Jiang Q, Li Y-X (2015) Catal Sci Technol 5:447–454

    Article  CAS  Google Scholar 

  34. Lan D-H, Yang F-M, Luo S-L, Au C-T, Yin S-F (2014) Carbon 73:351–360

    Article  CAS  Google Scholar 

  35. Luo RC, Zhou XT, Fang YX, Ji HB (2015) Carbon 82:1–11

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21376032) and Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Gu, Y., Wu, J. et al. Aqueous Grafting Ionic Liquid on Graphene Oxide for CO2 Cycloaddition. Catal Lett 147, 335–344 (2017). https://doi.org/10.1007/s10562-016-1941-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1941-0

Keywords

Navigation