Skip to main content
Log in

Erbium-Organic Framework as Heterogeneous Lewis Acid Catalysis for Hantzsch Coupling and Tetrahydro-4H-Chromene Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

An Erbium-organic framework was prepared by hydrothermal reaction. The prepared framework was characterized by Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), and X-ray powder diffraction (XRD). The framework has open metal sites at Er(III) centers, thus providing an accessible Lewis acid center for electrophile activation. Accordingly, the synthesized framework was used as Lewis acid heterogeneous catalyst for Hantzsch coupling reaction and tetrahydro-4H-chromene synthesis. The reaction condition has been optimized by variation of the reaction time, temperature, solvent and catalyst concentration. A variety of tetrahydro-4H-chromenes was synthesized and characterized by FT-IR and 1H NMR spectroscopy. Er-MOF, as a Lewis acid heterogeneous catalyst, showed excellent selectivity and high yield for these transformations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. MacGillivray LR (2010) Metal–organic frameworks: design and application. Wiley, New York

    Book  Google Scholar 

  2. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472

    Article  CAS  Google Scholar 

  3. Cook TR, Zheng Y-R, Stang PJ (2013) Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chem Rev 113:734–777

    Article  CAS  Google Scholar 

  4. Azhdari Tehrani A, Ghasempour H, Morsali A, Makhloufi G, Janiak C (2015) The effects of extending the π-electron system of pillaring linkers on fluorescence sensing of aromatic compounds in two isoreticular metal–organic frameworks. Cryst Growth Des 15(11):5543–5547

    Article  Google Scholar 

  5. Ghasempour H, Tehrani AA, Morsali A, Wang J, Junk PC (2016) Two pillared metal–organic frameworks comprising a long pillar ligand used as fluorescent sensors for nitrobenzene and heterogeneous catalysts for the Knoevenagel condensation reaction. Crystengcomm 18:2463–2468

    Article  CAS  Google Scholar 

  6. Tehrani AA, Abedi S, Morsali A, Wang J, Junk PC (2015) Urea-containing metal–organic frameworks as heterogeneous organocatalysts. J Mater Chem A 3:20408–20415

    Article  CAS  Google Scholar 

  7. Qiu S, Xue M, Zhu G (2014) Metal–organic framework membranes: from synthesis to separation application. Chem Soc Rev 43:6116–6140

    Article  CAS  Google Scholar 

  8. Dhakshinamoorthy A, Garcia H (2014) Metal–organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chem Soc Rev 43:5750–5765

    Article  CAS  Google Scholar 

  9. Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C-Y (2014) Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev 43:6011–6061

    Article  CAS  Google Scholar 

  10. Marx S, Kleist W, Baiker A (2011) Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives. J Catal 281:76–87

    Article  CAS  Google Scholar 

  11. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38:1450–1459

    Article  CAS  Google Scholar 

  12. Gustafsson M, Bartoszewicz A, Martín-Matute B, Sun J, Grins J, Zhao T, Li Z, Zhu G, Zou XA (2010) Family of highly stable lanthanide metal–organic frameworks: structural evolution and catalytic activity. Chem Mater 22:3316–3322

    Article  CAS  Google Scholar 

  13. Peng MM, Ganesh M, Vinodh R, Palanichamy M, Jang HT (2014) Solvent free oxidation of ethylbenzene over Ce-BTC MOF. Arab J Chem. doi:10.1016/j.arabjc.2014.11.024

    Google Scholar 

  14. He H, Ma H, Sun D, Zhang L, Wang R, Sun D (2013) Porous lanthanide–organic frameworks: control over interpenetration, gas adsorption, and catalyst properties. Cryst Growth Des 13:3154–3161

    Article  CAS  Google Scholar 

  15. Jiang H-L, Tsumori N, Xu Q (2010) A Series of (6, 6)-connected porous lanthanide–organic framework enantiomers with high thermostability and exposed metal sites: scalable syntheses, structures, and sorption properties. Inorg Chem 49:10001–10006

    Article  CAS  Google Scholar 

  16. Ren YW, Liang JX, Lu JX, Cai BW, Shi DB, Qi CR, Jiang HF, Chen J, Zheng D (2011) 1, 4-Phenylenediacetate-based Ln MOFs–synthesis, structures, luminescence, and catalytic activity. Eur J Inorg Chem 2011:4369–4376

    Article  CAS  Google Scholar 

  17. Ji S-J, Jiang Z-Q, Lu J, Loh T-P Facile ionic liquids-promoted one-pot synthesis of polyhydroquinoline derivatives under solvent free conditions. Synlett 2004, 2004:0831–0835

    Article  Google Scholar 

  18. Zhang X-Y, Li Y-Z, Fan X-S, Qu G-R, Hu X-Y, Wang J-J (2006) Multicomponent reaction in ionic liquid: a novel and green synthesis of 1, 4-dihydropyridme derivatives. Chin Chem Lett 17:150–152

    CAS  Google Scholar 

  19. Ivanciuc O, Ivanciuc T, Balaban AT (1998) Quantitative structure–property relationship study of normal boiling points for halogen/oxygen/sulfur-containing organic compounds using the CODESSA program. Tetrahedron 54:9129–9142

    Article  CAS  Google Scholar 

  20. Bonsignore L, Loy G, Secci D, Calignano A (1993) Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur J Med Chem 28:517–520

    Article  CAS  Google Scholar 

  21. Huynh TH, Abrahamsen B, Madsen KK, Gonzalez-Franquesa A, Jensen AA, Bunch L (2012) Design, synthesis and pharmacological characterization of coumarin-based fluorescent analogs of excitatory amino acid transporter subtype 1 selective inhibitors, UCPH-101 and UCPH-102. Bioorgan Med Chem 20:6831–6839

    Article  CAS  Google Scholar 

  22. Wang J-L, Liu D, Zhang Z-J, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES, Huang Z (2000) Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Nat Acad Sci 97:7124–7129

    Article  CAS  Google Scholar 

  23. Manion MK, Hockenbery D (2003) Targeting Bcl-2 related proteins in cancer therapy. Cancer Biol Ther 2:104–113

    Article  Google Scholar 

  24. Raj T, Bhatia RK, Sharma RK, Gupta V, Sharma D, Ishar MPS (2009) Mechanism of unusual formation of 3-(5-phenyl-3H-[1, 2, 4] dithiazol-3-yl) chromen-4-ones and 4-oxo-4H-chromene-3-carbothioic acid N-phenylamides and their antimicrobial evaluation. Eur J Med Chem 44:3209–3216

    Article  CAS  Google Scholar 

  25. Sabry NM, Mohamed HM, Khattab ESA, Motlaq SS, El-Agrody AM (2011) Synthesis of 4H-chromene, coumarin, 12H-chromeno [2, 3-d] pyrimidine derivatives and some of their antimicrobial and cytotoxicity activities. Eur J Med Chem 46:765–772

    Article  CAS  Google Scholar 

  26. Vats P, Hadjimitova V, Yoncheva K, Kathuria A, Sharma A, Chand K, Duraisamy AJ, Sharma AK, Saso L Chromenone and quinolinone derivatives as potent antioxidant agents. Med Chem Res 2014, 23:4907–4914

    Article  CAS  Google Scholar 

  27. Khodaei MM, Bahrami K, Farrokhi A (2010) Amberlite IRA-400 (OH–) as a catalyst in the preparation of 4H-benzo [b] pyrans in aqueous media. Syn Commun 40:1492–1499

    Article  CAS  Google Scholar 

  28. Heravi MM, Jani BA, Derikvand F, Bamoharram FF, Oskooie HA (2008) Three component, one-pot synthesis of dihydropyrano [3, 2-c] chromene derivatives in the presence of H6P2W12O62·18H2O as a green and recyclable catalyst. Catal Commun 10:272–275

    Article  CAS  Google Scholar 

  29. Li Y, Chen H, Shi C, Shi D, Ji S (2010) Efficient one-pot synthesis of spirooxindole derivatives catalyzed by L-proline in aqueous medium. J Comb Chem 12:231–237

    Article  CAS  Google Scholar 

  30. Shaabani A, Samadi S, Badri Z, Rahmati A (2005) Ionic liquid promoted efficient and rapid one-pot synthesis of pyran annulated heterocyclic systems. Catal Lett 104:39–43

    Article  CAS  Google Scholar 

  31. Nasr-Esfahani M, Hoseini SJ, Montazerozohori M, Mehrabi R, Nasrabadi H (2014) Magnetic Fe3O4 nanoparticles: efficient and recoverable nanocatalyst for the synthesis of polyhydroquinolines and Hantzsch 1, 4-dihydropyridines under solvent-free conditions. J Mol Catal A Chem 382:99–105

    Article  CAS  Google Scholar 

  32. Thakur A, Tripathi M, Rajesh UC, Rawat DS (2013) Ethylenediammonium diformate (EDDF) in PEG 600: an efficient ambiphilic novel catalytic system for the one-pot synthesis of 4H-pyrans via Knoevenagel condensation. RSC Adv 3:18142–18148

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Research Council of Alzahra University and from the Iran National Science Foundation (INSF). Dedicated to the memory of Fatemeh Ghazvini.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taraneh Hajiashrafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajiashrafi, T., Karimi, M., Heydari, A. et al. Erbium-Organic Framework as Heterogeneous Lewis Acid Catalysis for Hantzsch Coupling and Tetrahydro-4H-Chromene Synthesis. Catal Lett 147, 453–462 (2017). https://doi.org/10.1007/s10562-016-1913-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1913-4

Keywords

Navigation