Skip to main content
Log in

Whither Goest Thou, Catalysis

  • Perspective
  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

While the history of catalysis goes back to antiquity, catalysis as we know it today began in the nineteenth century with catalytic hydrogenation having its beginning with the report by Sabatier in 1897 on the hydrogenation of ethylene over a reduced NiO catalyst. The ground-work for future study of catalysis was laid in the early twentieth century primarily by what we would call today Physical Chemists. About the middle of the last century, though, catalysis, particularly catalytic hydrogenations and oxidations, began to be used more extensively in synthetic applications. With the primary interest being selectivity, these reactions became part of the synthetic chemist’s ‘tool box’. The last quarter of the past century saw an increased interest in understanding the details of the chemistry taking place on the catalyst surface. Surface Science techniques were used to define the nature of the active sites responsible for promoting specific reactions. EHMO calculations provided information on the nature of the interaction between the substrate and metal catalyst surface. This approach was recently replaced by the use of DFT calculations to obtain information on the energetics of the interaction of a metal surface and the substrate or presumed reaction intermediates. Another twenty-first century innovation was the introduction of “nano-technology” with nano-particles of metals being used as catalysts. Thirty years ago these were referred to as dispersed supported metal catalysts. The question is, then, with this introduction of new experimental and computational techniques, has the central goal of catalysis, efficient and selective synthetic capability and pollution abatement, been overshadowed by the very nature of the experimentation being used? Has the research leading to a more detailed understanding of the catalyst surface led to the preparation of more active and selective catalysts or are the better catalysts still being prepared by the old trial and error approach? Perhaps more efficient catalysts could be designed if there were a better understanding of what was taking place on the surface of ‘real world’ catalysts rather than on idealized substitutes. The presentation will cover a brief review of catalysis with emphasis on catalytic hydrogenation including proposals about the nature of catalytic active sites which were made through the years. Some suggestions will be made as well as the identification of some apparent contradictions. Finally, a few areas of potential future research interest will be mentioned.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Scheme 1
Scheme 2
Scheme 3
Fig. 15
Scheme 4
Fig. 16
Fig. 17
Scheme 5
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Somorjai GA (1976) Acc Chem Res 9:248–256

    Article  CAS  Google Scholar 

  2. White JM (1982) Science 218:429–433

    Article  CAS  Google Scholar 

  3. Van Santen FA (1989) J Mol Catal 54:288–300

    Article  Google Scholar 

  4. Sholl DS, Steckel JA (2009) Density functional theory, a practical introduction. Wiley, New York

    Book  Google Scholar 

  5. Bond GC (1962) Catalysis by metals. Academic Press, New York

    Google Scholar 

  6. Bond GC (1987) Heterogeneous catalysis, principles and applications. Oxford University Press, Oxford

    Google Scholar 

  7. Augustine RL (1965) Catalytic hydrogenation, techniques and applications in organic synthesis. Dekker, New York

    Google Scholar 

  8. Augustine RL (1995) Heterogeneous catalysis for the synthetic chemist. Dekker, New York

    Google Scholar 

  9. Rylander PN (1967) Catalytic hydrogenation over platinum metals. Academic Press, New York

    Google Scholar 

  10. Rylander PN (1973) Organic synthesis with noble metal catalysts. Academic Press, New York

    Google Scholar 

  11. Rylander PN (1979) Catalytic hydrogenation in organic synthesis. Academic Press, New York

    Google Scholar 

  12. Rylander PN (1985) Hydrogenation methods. Academic Press, New York

    Google Scholar 

  13. Anderson RB (1968) Experimental methods in catalysis Research, vol I. Academic Press, New York

    Google Scholar 

  14. Anderson RB, Dawson PT (1976) Experimental methods in catalysis research, vol II. Academic Press, New York

    Google Scholar 

  15. Anderson RB, Dawson PT (1976) Experimental methods in catalysis research, vol III. Academic Press, New York

    Google Scholar 

  16. Freifelder M (1971) Practical catalytic hydrogenation. Wiley, New York

    Google Scholar 

  17. Anderson JR (1975) Structure of metallic catalysts. Academic Press, New York

    Google Scholar 

  18. Kieboom APG, Van Rantwijk F (1977) Hydrogenation and hydrogenolysis in synthetic organic chemistry. Delft University Press, Delft

    Book  Google Scholar 

  19. Thomas JM, Lambert RM (1980) Characterization of catalysts. Wiley, New York

    Google Scholar 

  20. Boudart M, Djega-Mariadassou G (1984) Kinetics of heterogeneous catalytic reactions. Princeton University Press, Princeton

    Book  Google Scholar 

  21. Bartok VM (1985) Stereochemistry of heterogeneous metal catalysis. Wiley, New York

    Google Scholar 

  22. Gasser RPH (1985) An introduction to chemisorption and catalysis by metals. Clarindon Press, Oxford

    Google Scholar 

  23. Gates BC (1992) Catalytic chemistry. Wiley, New York

    Google Scholar 

  24. Somorjai GA (1994) Introduction to surface chemistry and catalysis. Wiley, New York, (2010) second edition

    Google Scholar 

  25. Smith GV, Notheisz F (1999) Heterogeneous catalysis in organic chemistry. Academic Press, New York

    Google Scholar 

  26. Nishimura S (2001) Handbook of heterogeneous catalytic hydrogenation for organic synthesis. Wiley, New York

    Google Scholar 

  27. Sabatier P (1922) Catalysis in organic chemistry. Translated by Reid EE. Van Nostrand, New York. Open access book http://www.archive.org/details/cu31924003962002.

  28. Mitchell JA (1932) J Chem Ed 9:261–271

    Article  CAS  Google Scholar 

  29. Burwell RL Jr (1983) Heterogeneous catalysis before 1934. In: Davis BH, Hettinger WP Jr (eds) Heterogeneous catalysis, selected American histories. ACS symposium Series 222. American Chemical Society, Washington DC, pp 3–12

  30. Roberts MW (2000) Catal Lett 67:1–4

    Article  Google Scholar 

  31. Wisniak J (2005) Indian J Chem Technol 12:232–243

    CAS  Google Scholar 

  32. Taylor HS (1922) Chem Age 30:309–314

    CAS  Google Scholar 

  33. Mond L, Langer C, Quinke FJ (1890) Chem Soc 57:749–753

    Article  CAS  Google Scholar 

  34. Sabatier P, Senderens JB (1897) Compt Rend 124:616–618

    CAS  Google Scholar 

  35. Sabatier P, Senderens JB (1897) Compt Rend 124:1358–1360

    Google Scholar 

  36. Sabatier P, Senderens JB (1899) Compt Rend 128:1173–1176

    CAS  Google Scholar 

  37. Sabatier P, Senderens JB (1900) Compt Rend 131:40–42

    Google Scholar 

  38. Sabatier P, Senderens JB (1902) Compt Rend 134:1127–1130

    Google Scholar 

  39. Sabatier P, Senderens JB (1902) Compt Rend 135:87–89

    Google Scholar 

  40. Sabatier P, Senderens JB (1901) Compt Rend 132:210–212

    CAS  Google Scholar 

  41. Sabatier P, Senderens JB (1913) Compt Rend 156:1430–1434, 1951–1954

  42. Sabatier P, Senderens JB (1904) Compt Rend 138:457–460, 1257–1259

  43. Sabatier P, Senderens JB (1903) Compt Rend 137:301–303

    Google Scholar 

  44. Sabatier P, Senderens JB (1902) Compt Rend 135:225–227

    Google Scholar 

  45. Sabatier P, Senderens JB (1905) Compt Rend 140:482–486

    Google Scholar 

  46. Sabatier P (1913) La catalyse en chimie organique. Beranger, Paris

    Google Scholar 

  47. Sabatier P (1922) Catalysis in organic chemistry. Translated by Reid EE. Van Nostrand, New York, pp 125–189

    Google Scholar 

  48. Sabatier P (1922) Catalysis in organic chemistry. Translated by Reid EE. Van Nostrand, New York, pp 126–132

    Google Scholar 

  49. Sabatier P (1922) Catalysis in organic chemistry. Translated by Reid EE. Van Nostrand, New York, p 191

    Google Scholar 

  50. Paal C, Amberger C (1905) Chem Ber 38:1406–1408

    Article  CAS  Google Scholar 

  51. Sabatier P (1922) Catalysis in organic chemistry. Translated by Reid EE. Van Nostrand, New York, pp 191–196

    Google Scholar 

  52. Fokin SJ (1908) J Russ Phys Chem Soc 39:607–609

    CAS  Google Scholar 

  53. Willstatter R, Jaquet D (1918) Chem Ber 51:767–779

    Article  CAS  Google Scholar 

  54. Sabatier P (1922) Catalysis in organic chemistry. Translated by Reid EE. Van Nostrand, New York, pp 197–205

    Google Scholar 

  55. Rosenmund KW (1918) Chem Ber 51:585–594

    Article  CAS  Google Scholar 

  56. Augustine RL (1965) Catalytic hydrogenation, techniques and applications in organic synthesis. Dekker, New York, pp 130–131

    Google Scholar 

  57. Nishimura S (2001) Handbook of heterogeneous catalytic hydrogenation for organic synthesis. Wiley, New York, pp 638–640

    Google Scholar 

  58. Sabatier P (1922) Catalysis in organic chemistry. Translated by Reid EE. Van Nostrand, New York, pp 212–216

    Google Scholar 

  59. Sabatier P (1922) Catalysis in organic chemistry. Translated by Reid EE. Van Nostrand, New York, pp 206–212

    Google Scholar 

  60. Pines H (1983) VN Ipatieff: As I knew him In: Davis BH, Hettinger WP Jr (eds) Heterogeneous catalysis, selected American histories. ACS symposium series 222. American Chemical Society, Washington DC, pp 23–32

  61. Sabatier P (1922) Catalysis in organic chemistry Translated by Reid EE. Van Nostrand, New York, pp 206–207

    Google Scholar 

  62. Bedford F (1910) U.S. Patent No. 949,954. U.S. Patent and Trademark Office: Washington, DC

    Google Scholar 

  63. Ellis C (1912) U.S. Patent No. 1,026,156. U.S. Patent and Trademark Office: Washington, DC

    Google Scholar 

  64. Fokin S J (1913) J Russ Phys Chem Soc 45:286–288

    CAS  Google Scholar 

  65. Burwell RL Jr (1983) Heterogeneous catalysis before 1934. In Davis BH, Hettinger WP Jr (eds) Heterogeneous Catalysis, selected American histories. ACS symposium series 222. American Chemical Society, Washington DC, p 7

  66. Wisniak J (2005) Indian J Chem Technol 12:237

    Google Scholar 

  67. Sabatier P (1922) Catalysis in organic chemistry. Translated by Reid EE. Van Nostrand, New York, p 53

    Google Scholar 

  68. Lewis WCMcC (1920) J Chem Soc 623–638

  69. Bodenstein M, Fink CG (1907) Z physik Chem 60:1–45

    CAS  Google Scholar 

  70. Taylor HS (1925) Proc R Soc Lond Ser A 108:105–111

    Article  CAS  Google Scholar 

  71. Taylor HS (1926) Proc R Soc Lond Ser A 113A:77–86

    Article  CAS  Google Scholar 

  72. Taylor HS, Burns RM (1921) J Am Chem Soc 43:1273–1287

    Article  CAS  Google Scholar 

  73. Gauger AW, Taylor HS (1923) J Am Chem Soc 45:920–928

    Article  CAS  Google Scholar 

  74. Taylor HS (1924) J Phys Chem 28:898–942

    CAS  Google Scholar 

  75. Sadek H, Taylor HS (1950) J Am Chem Soc 72:1168–1175

    Article  CAS  Google Scholar 

  76. Taylor HS (1948) Adv Catal 1:1–26

    CAS  Google Scholar 

  77. Kistiakowsky GB (1927) Proc Natl Acad Sci USA 13:1–4

    Article  CAS  Google Scholar 

  78. Langmuir I (1918) J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  79. Armstrong EF, Hilditch TP (1925) Chem & Ind 44:701–709

    CAS  Google Scholar 

  80. Armstrong EF, Hilditch TP (1919) Proc R Soc Lond Ser A 96:137–146

    Article  CAS  Google Scholar 

  81. Armstrong EF, Hilditch TP (1923) Proc R Soc Lond Ser A 103:586–597

    Article  CAS  Google Scholar 

  82. Armstrong EF, Hilditch TP (1925) Proc R Soc Lond Ser A 108:121–131

    Article  CAS  Google Scholar 

  83. Taylor HS (1921) J Ind Eng Che 13:75–78

    Article  Google Scholar 

  84. Armstrong EF, Hilditch TP (1925) Proc R Soc Lond Ser A 108:111–120

    Article  CAS  Google Scholar 

  85. Gaines GL Jr, Wise G (1983) Insiders, outsiders and surfaces: Irving Langmuir’s contribution to catalysis. In: Davis BH, Hettinger WP Jr (eds) Heterogeneous catalysis, selected American histories. ACS symposium series 222. American Chemical Society, Washington DC, pp 13–22

  86. Langmuir I (1916) J Am Chem Soc 38:1145–1156

    Article  CAS  Google Scholar 

  87. Langmuir I (1921) Trans Faraday Soc 17:607–620

    Article  Google Scholar 

  88. Langmuir I, Mackay GMJ (1914) J Am Chem Soc 36:1708–1722

    Article  CAS  Google Scholar 

  89. Langmuir I (1916) J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  90. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  91. Emmett PH (1948) Adv Catal 1:65–90

    CAS  Google Scholar 

  92. Armstrong EF, Hilditch TP (1921) Proc R Soc Lond Ser A 100:240–252

    Article  CAS  Google Scholar 

  93. Horiuchi J, Ogden G, Polanyi M (1934) Trans Faraday Soc 30:663–665

    Article  CAS  Google Scholar 

  94. Horiuti I, Polanyi M (1934) Trans Faraday Soc 30:1164–1172

    Article  Google Scholar 

  95. Sauvage J-F, Baker R, Hussey AS (1960) J Am Chem Soc 82:6090–6095

    Article  CAS  Google Scholar 

  96. Fukushima DK, Gallagher TF (1955) J Am Chem Soc 77:139–142

    Article  CAS  Google Scholar 

  97. Rooney JJ, Gault FG, Kemball C (1960) Proc Chem Soc 407–408

  98. Bond GC (1966) Disc Faraday Soc 41:200–214

    Article  Google Scholar 

  99. Mitsui S, Gohke K, Saito H, Nanbu A, Senda Y (1973) Tetrahedron 29:1523–1530

    Article  CAS  Google Scholar 

  100. Mohsin SB, Trenary M, Robota HJ (1988) J Phys Chem 92:5229–5233

    Article  CAS  Google Scholar 

  101. Augustine RL (1995) Heterogeneous catalysis for the synthetic chemist. Dekker, New York, p 11

    Google Scholar 

  102. Siegal S, Smith GV (1960) J Am Chem Soc 82:6082–6087

    Article  Google Scholar 

  103. Siegal S, Dunkel M, Smith GV, Halpern W, Cozart J (1966) J Org Chem 31:2802–2806

    Article  Google Scholar 

  104. Mitsui S, Imaizumi S, Nanbu A, Senda Y (1975) J Catal 36:333–337

    Article  CAS  Google Scholar 

  105. Mitsui S, Saito H, Sekiguchi S, Kumagai Y, Senda Y (1972) Tetrahedron 28:4751–4760

    Article  CAS  Google Scholar 

  106. Augustine RL, Yaghmaie F, Van Peppen JF (1984) J Org Chem 49:1865–1870

    Article  CAS  Google Scholar 

  107. Augustine RL (1995) Heterogeneous catalysis for the synthetic chemist. Dekker, New York, p 321

    Google Scholar 

  108. Siegel S, Smith GV (1960) J Am Chem Soc 82:6087–6090

    Article  CAS  Google Scholar 

  109. Sauvage J-F, Baker RH, Hussey AS (1961) J Am Chem Soc 83:3874–3877

    Article  CAS  Google Scholar 

  110. Rideal EK (1939) Proc Camb Philos Soc 35:130–132

    Article  CAS  Google Scholar 

  111. Twigg GH, Rideal EK (1939) Proc R Soc Lond Ser A 171:55–69

    Article  CAS  Google Scholar 

  112. Karanth NG, Hughes R (1973) J Appl Chem Biotechnol 23:817–827

    Article  CAS  Google Scholar 

  113. Lidefelt JO, Magnusson J, Schoeoen NH (1983) J Am Oil Chem Soc 60:600–602

    Article  CAS  Google Scholar 

  114. Rastogi A (1988) J Indian Chem Soc 65:838–843

    CAS  Google Scholar 

  115. Pauling L (1949) Proc R Soc Lond Ser A 196:343–362

    Article  CAS  Google Scholar 

  116. Huang K, Wyllie G (1950) Disc Faraday Soc 18–27

  117. Hilditch TP, Moore CW (1923) Chem Ind 42:15T–17T

    Article  Google Scholar 

  118. Tuley WF, Adams R (1925) J Am Chem Soc 47:3061–3068

    Article  CAS  Google Scholar 

  119. Augustine RL (1995) Heterogeneous catalysis for the synthetic Chemist. Dekker, New York, pp 315–343

    Google Scholar 

  120. Bond G.C, Webb G, Wells PB, Winterbottom JM (1965) J Chem Soc 3218–3227

  121. Wells PB, Bates AJ (1968) J Chem Soc A 3064–3069

  122. Phillipson JJ, Wells PB, Wilson GR (1969) J Chem Soc A 1351–1363

  123. Bond GC, Sermon PA, Webb G, Buchanan DA, Wells PB (1973) Chem Commun 444–445

  124. Sermon P.A, Bond GC, Wells PB (1979) J Chem Soc Faraday Trans 1 75:385–394

    Article  CAS  Google Scholar 

  125. Augustine RL (1995) Heterogeneous catalysis for the synthetic chemist. Dekker, New York, p 316

    Google Scholar 

  126. Augustine R.L, Meng L (1996) Chem Ind 68:15–30

    CAS  Google Scholar 

  127. Thompson HW (1971) J Org Chem 36:2577–2581

    Article  CAS  Google Scholar 

  128. Mitsui S, Ito M, Nanbu A, Senda Y (1975) J Catal 36:119–124

    Article  CAS  Google Scholar 

  129. Augustine RL (1972) Steroid hydrogenation In: Fried J, Edwards JA (eds) Organic reactions in steroid chemistry, vol 1. Van Nostrand Reinhold, New York, pp 111–144

    Google Scholar 

  130. Augustine RL (1995) Heterogeneous catalysis for the synthetic chemist. Dekker, New York, pp 67–78

    Google Scholar 

  131. Augustine RL, Warner RW, Melnick MJ (1984) J Org Chem 49:4853–4856

    Article  CAS  Google Scholar 

  132. Augustine RL, Lenczyk ME (1986) J Catal 97:269–271

    Article  CAS  Google Scholar 

  133. Augustine RL, Techasauvapak P (1994) J Mol Catal 87:95–105

    Article  CAS  Google Scholar 

  134. Augustine RL (1995) Heterogeneous catalysis for the synthetic chemist. Dekker, New York, pp pp 252–260, 301–305

  135. Cheah KY, Tang TS, Mizukami F, Niwa S, Toba M, Choo YM (1992) J Am Oil Chem Soc 69:410–416

    Article  CAS  Google Scholar 

  136. Sinfelt JH, Carter JL, Yates DJC (1972) J Catal 24:283–296

    Article  CAS  Google Scholar 

  137. Burch R (1982) Acc Chem Res 15:24–31

    Article  CAS  Google Scholar 

  138. Augustine RL (1995) Heterogeneous catalysis for the synthetic chemist. Dekker, New York, p 255

    Google Scholar 

  139. Bond, GC, Webster DE (1969) Ann NY Acad Sci 158:540–559

    Article  CAS  Google Scholar 

  140. Bond GC, Webster DE (1966) Platin Metals Rev 10:10–13

    CAS  Google Scholar 

  141. Augustine RL (1995) Heterogeneous catalysis for the synthetic chemist. Dekker, New York, pp 27–49

    Google Scholar 

  142. Tetenyi P (1992) React Kinet Catal Lett 47:93–98

    Article  CAS  Google Scholar 

  143. Perez OL, Romeu D, Yacaman MJ (1982) Appl Surf Sci 13:402–413

    Article  CAS  Google Scholar 

  144. Bowden FP (1928) Nature 122:647–648

    Article  CAS  Google Scholar 

  145. Somorjai GA, Blakely DW (1975) Nature 258:580–583

    Article  CAS  Google Scholar 

  146. Somorjai GA, McCrea KR, Zhu J (2002) Top Catal 18:157–166

    Article  CAS  Google Scholar 

  147. Hendriksen BLM, Ackerman MD, van Rijn R, Stoltz D, Popa I, Balmes O, Resta A, Wermeille D, Felici R, Ferer S, Frenken JWM (2010) Nat Chem 2:730–734

    Article  CAS  Google Scholar 

  148. Chang LY, Barnard AS, Gontard LC, Dunin-Borkowski RE (2010) Nano Lett 10:3073–3076

    Article  CAS  Google Scholar 

  149. Vogel D, Spiel C, Schmid M, Stoger-Pollach M, Schlogl R, Suchorski Y, Rupperechter G (2013) J Phys Chem C 117:12054–12060

    Article  CAS  Google Scholar 

  150. Cheronis ND (1947) Organic chemistry, an introduction to the carbon compounds. Crowell, New York, pp 232–233

    Google Scholar 

  151. Beeck O, Smith AE, Wheeler A (1940) Proc R Soc Lond Ser A 177:62–90

    Article  CAS  Google Scholar 

  152. Augustine RL (1995) Heterogeneous catalysis for the synthetic chemist. Dekker, New York, p 28

    Google Scholar 

  153. Blakely DW, Somorjai GA (1976) J Catal 42:181–196

    Article  CAS  Google Scholar 

  154. Davis SM, Zaera F, Somorjai GA (1982) J Am Chem Soc 104:7453–7461

    Article  CAS  Google Scholar 

  155. Goodman DW (1984) Acc Chem Res 17:194–200

    Article  CAS  Google Scholar 

  156. Farnsworth HE (1968) In: Anderson RB (ed) Experimental methods in catalysis research, vol I. Academic Press, New York, p 268

    Google Scholar 

  157. Morales R, Zaera F (2007) J Phys Chem C 111:18367–18375

    Article  CAS  Google Scholar 

  158. Herz RK, Gillespie WD, Petersen EE, Somorjai GA (1981) J Catal 67:371–386

    Article  CAS  Google Scholar 

  159. Miller DG (1960) Chem Rev 60:15–37

    Article  CAS  Google Scholar 

  160. Lambert RM, Williams FJ, Cropley RL, Palermo A (2005) J Mol Catal A 228:27–33

    Article  CAS  Google Scholar 

  161. Hawker S, Mukoid C, Badyal JPS, Lambert RM (1990) Stud Surf Sci Catal 55:739–746

    Article  CAS  Google Scholar 

  162. Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BFG, Lambert RM (2008) Nature 454:981–983

    Article  CAS  Google Scholar 

  163. Cropley RL, Williams FJ, Vaughan OPH, Urquhart AJ, Tikhov MS, Lambert RM (2005) Surf Sci 578:L85–L88

    Article  CAS  Google Scholar 

  164. Torres D, Lopez N, Illas F, Lambert RM (2005) J Am Chem Soc 127:10774–10775

    Article  CAS  Google Scholar 

  165. Tysoe WT, Nyberg GL, Lambert RM (1983) Chem Commun 623–625

  166. McIntosh AI, Watson DJ, Lambert RM (2007) Langmuir 23:6113–6118

    Article  CAS  Google Scholar 

  167. Yao Y, Yan Z, Chen L, Zhou Z, Liu L, Goodman DW (2012) Catal Lett 142:1437–1444

    Article  CAS  Google Scholar 

  168. McClure SM, Goodman DW (2011) Top Catal 54:349–362

    Article  CAS  Google Scholar 

  169. Osborne JA, Jardine FH, Young JF, Wilkinson G (1966) J Chem Soc A 1711–1732

  170. O’Connor C, Wilkinson G (1968) J Chem Soc A 2665–2671

  171. Augustine RL, Van Peppen JF (1970) Ann NY Acad Sci 172:244–252

    Article  CAS  Google Scholar 

  172. Siegel S, Outlaw J Jr, Garti N (1978) J Catal 52:102–115

    Article  CAS  Google Scholar 

  173. Basset JM, Scott SL, Choplin A, Leconte M, Quignard F, Santini C, Theolier A (1993) In: Joyner RW, van Santen RA (eds) Elementary reaction steps in heterogeneous catalysis. Kluwer, The Netherlands, pp 39–49

    Chapter  Google Scholar 

  174. Tabor D (1981) Contemp Phys 22:215–234

    Article  CAS  Google Scholar 

  175. Augustine RL (1995) Heterogeneous catalysis for the synthetic chemist. Dekker, New York, pp 37–39

    Google Scholar 

  176. Ledoux MJ (1978) Nouv J Chim 2:9–11

    CAS  Google Scholar 

  177. Ledoux MJ, Gault FG, Bouchy A, Roussy G (1978) J Chem Soc Faraday Trans 1 74:2652–2666

    Article  CAS  Google Scholar 

  178. Ledoux MJ, Gault FG (1979) J Catal 60:15–22

    Article  CAS  Google Scholar 

  179. Ledoux MJ (1981) J Catal 70:375–383

    Article  CAS  Google Scholar 

  180. Smith GV Private communication

  181. Augustine RL, Baum DR, High KG, Szivos LS, O’Leary ST (1991) J Catal 127:675–697

    Article  CAS  Google Scholar 

  182. Augustine RL, Thompson MM (1987) J Org Chem 52:1911–1915

    Article  CAS  Google Scholar 

  183. Augustine RL (1995) Heterogeneous catalysis for the synthetic Chemist. Dekker, New York, p 44

    Google Scholar 

  184. Augustine RL, Doyle LK (1993) J Catal 141:58–70

    Article  CAS  Google Scholar 

  185. Xu W, Kong JS, Chen P (2009) J Phys Chem C 113:2393–2404

    Article  CAS  Google Scholar 

  186. Maurice V, Minot C (1989) Langmuir 5:734–741

    Article  CAS  Google Scholar 

  187. Saillard J-Y, Hoffmann R (1984) J Am Chem Soc 106:2006–2026

    Article  CAS  Google Scholar 

  188. Sautet P, Paul JF (1991) Catal Lett 9:245–260

    Article  CAS  Google Scholar 

  189. Mitsui T, Rose MK, Fomin E, Ogletree DF, Salmeron M (2003) Nature 422:705–707

    Article  CAS  Google Scholar 

  190. Ahmed F, Alam MK, Miura R, Suzuki A, Tsuboi H, Hatakeyama N, Endou A, Takaba H, Kubo M, Miyamoto A (2011) Catal Today 164:16–22

    Article  CAS  Google Scholar 

  191. Silvestre J, Hoffmann R (1985) Langmuir 1:621–647

    Article  CAS  Google Scholar 

  192. Sung S-S, Hoffmann R (1985) J Am Chem Soc 107:578–584

    Article  CAS  Google Scholar 

  193. De Koster A, Jansen APJ, van Santen RA, Geerlings JJC (1989) Faraday Discuss Chem Soc 87:263–273

    Article  Google Scholar 

  194. Augustine RL (1995) Heterogeneous catalysis for the synthetic chemist. Dekker, New York, pp 51–66

    Google Scholar 

  195. Augustine RL, Lahanas KM, Cole F (1993) Stud Surf Sci Catal 75:1567–1570

    Article  CAS  Google Scholar 

  196. Augustine RL, Lahanas KM (1994) Chem Ind 53:279–291

    CAS  Google Scholar 

  197. Augustine RL (1995) Heterogeneous catalysis for the synthetic chemist. Dekker, New York, p 55

    Google Scholar 

  198. Drago RS (1977) Physical methods in inorganic chemistry. Saunders, New York, pp 396–406

    Google Scholar 

  199. Augustine RL (1995) Heterogeneous catalysis for the synthetic chemist. Dekker, New York, p 61

    Google Scholar 

  200. Neurock M, Pallassana V, van Santen RA (2000) J Am Chem Soc 122:1150–1153

    Article  CAS  Google Scholar 

  201. Miura T, Kobayashi H, Domen K (2000) J Phys Chem B 104:6809–6814

    Article  CAS  Google Scholar 

  202. Yuknazerm ND, Fellah MF, Onal I (2012) Turk J Chem 36:55–67

    Google Scholar 

  203. Xia Y, Fan C, Zhou Z-L, Zhu Y-A, Zhou X-G (2013) J Mol Catal A 370:44–49

    Article  CAS  Google Scholar 

  204. Garcia-Mota M, Gomez-Diaz J, Novell-Leruth G, Vargas-Fuentes C, Bellarosa L, Bridier B, Perez-Ramerez J, Lopez N (2011) Theor Chem Acc 128:663–673

    Article  CAS  Google Scholar 

  205. Chizallet C, Bonnard G, Krebs E, Bisson L, Thomazeau C, Raybaud P (2011) J Phys Chem C 115:12135–12149

    Article  CAS  Google Scholar 

  206. Luo Q, Wang T, Beller M, Jiao H (2013) J Phys Chem C 117:12715–12724

    Article  CAS  Google Scholar 

  207. Shi W, Zhang L, Ni Z, Xiao X, Xia S (2014) RSC Adv 4:27003–27012

    Article  CAS  Google Scholar 

  208. Loffreda D, Delbecq F, Vigne F, Sautet P (2006) J Am Chem Soc 128:1316–1323

    Article  CAS  Google Scholar 

  209. Oliva C, van den Berg C, Niemantsverdriet JW, Curulla-Ferre D (2007) J Catal 245:436–445

    Article  CAS  Google Scholar 

  210. Oliva C, van den Berg C, Niemantsverdriet JW, Curulla-Ferre D 2007 J Catal 248:38–45

    Article  CAS  Google Scholar 

  211. Yates DJC, Murrell LL, Prestridge EB (1979) J Catal 57:41–63

    Article  CAS  Google Scholar 

  212. Graydon WF, Langan MD (1981) J Catal 69:180–192

    Article  CAS  Google Scholar 

  213. Boudart M, Djega–Mariadassou G (1984) Kinetics of heterogeneous catalytic reactions. Princeton University Press, Princeton, pp 155–193

    Book  Google Scholar 

  214. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301–309

    Article  CAS  Google Scholar 

  215. Haruta M (2003) Stud Surf Sci Catal 145:31–38

    Article  CAS  Google Scholar 

  216. Enache DI, Knoght DW, Hutchings GJ (2005) Catal Lett 103:43–52

    Article  CAS  Google Scholar 

  217. Sakurai H, Tsubota S, Haruta M (1993) Appl Catal A Gen 102:125–136

    Article  CAS  Google Scholar 

  218. Okumura M, Akita T, Haruta M (2002) Catal Today 74:265–269

    Article  CAS  Google Scholar 

  219. Haruta M (1997) Catal Today 36:153–166

    Article  CAS  Google Scholar 

  220. Carrettin S, McMorn P, Johnston P, Griffin K, Kiely CJ, Attard GA, Hutchings GJ (2004) Top Catal 27:131–136

    Article  CAS  Google Scholar 

  221. Thomas JM, Saghi Z, Gai PL (2011) Top Catal 54:588–594

    Article  CAS  Google Scholar 

  222. Sheng W, Yang Q, Weng J (2011) Curr Org Chem 15:3692–3705

    Article  CAS  Google Scholar 

  223. Van Bokhoven JA (2009) Chemia 63:257–260

    Google Scholar 

  224. Michel C, Gallezot P (2015) ACS Catal 5:4130–4132

    Article  CAS  Google Scholar 

  225. Berkowitz LM, Rylander PN (1959) J Org Chem 24:708–709

    Article  CAS  Google Scholar 

  226. Sun B, Khan F-A, Sus-Fink G (2013) Appl Catal A Gen 467:310–314

    Article  CAS  Google Scholar 

  227. Zhang L, Wang X, Xue Y, Zeng X, Chen H, Li R, Wang S (2014) Catal Sci Technol 4:1939–1948

    Article  CAS  Google Scholar 

  228. Eley DD (1976) Chem Ind (Lond) 3:12–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Augustine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Augustine, R.L. Whither Goest Thou, Catalysis. Catal Lett 146, 2393–2416 (2016). https://doi.org/10.1007/s10562-016-1865-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1865-8

Keywords

Navigation