Skip to main content
Log in

Characterization and Catalytic Activity of Different Carbon Supported Pd Nanocomposites

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In our experiments, high nitrogen content N-doped multiwall carbon nanotubes (N-CNTs) were synthetized by chemical vapour deposition (CVD) method, after these nanotubes were used as dehydrogenation catalyst support. The chemical nature of the nitrogen atoms in graphitic lattice of N doped CNT was characterized with X-ray photoelectron spectroscopy (XPS) analysis, the pyridinic and graphitic nitrogen atoms were located in nanotube wall. The lattice defects of N-CNT structure were checked with Raman spectroscopy, according to which many defect were present in structure of N-CNTs, owing to the incorporated nitrogen atoms. The formed oxidized N-doped CNT samples were studied by Fourier transform infrared (FT-IR) spectroscopy, according to the test, many oxygen content surface functional groups were identified (COOH, OH and C=O). Palladium nanoparticle morphology and surface on the catalyst substrates were characterized by high resolution transmission electron microscopy (HRTEM) and X-Ray diffraction (XRD) methods. The diameters of palladium particles were slightest in case of carbon nanotube supported catalyst (2 nm), smaller than case of activated carbon, due to absence of microporosity and presence of functional groups on the N-CNT surface. The catalytic activity of the CNT supported catalysts was compared to an active carbon and norit supported samples. The dehydrogenation of C2H6 has been investigated on Pd deposited on various carbon supported catalysts at 573–973 K. On the Pd/CNT catalyst the highest selectivity was reached to ethene (85 %) at 973 K. The most active Pd/Ac achieved 64 % conversion at 973 K.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu Z, Fareid LE, Moljord K, Blekkan EA, Walmsley JC, Chen D (2008) Appl Catal B 84:482

    Article  CAS  Google Scholar 

  2. Zhang Y, Zhang HB, Lin GD, Chen P, Yuan YZ, Tsai KR (1999) Appl Catal A 187:213

    Article  CAS  Google Scholar 

  3. Bahome MC, Jewell LL, Hildebrandt D, Glasser D, Coville NJ (2005) Appl Catal A 287:60

    Article  CAS  Google Scholar 

  4. Ovejero G, Sotelo JL, Rodriguez A, Diaz C, Sanz R, Garcia J (2007) Ind Eng Chem Res 46:6449

    Article  CAS  Google Scholar 

  5. Chen WY, Ji J, Feng X, Duan XZ, Qian G, Li P, Zhou XG, Chen D, Yuan WK (2014) J Am Chem Soc 136:16736

    Article  CAS  Google Scholar 

  6. Chambers A, Nemes T, Rodriguez NM, Baker RTK (1998) J Phys Chem B 102:2251

    Article  CAS  Google Scholar 

  7. Serp P, Corrias M, Kalck P (2003) Appl Catal A 253:337

    Article  CAS  Google Scholar 

  8. Pham-Huu C, Keller N, Ehre G, Charbonniere LJ, Ziessel R, Ledoux MJ (2001) J Mol Catal A 170:155

    Article  CAS  Google Scholar 

  9. Onoe T, Iwamoto S, Inoue M, (2007) Catal Comm 8:701

    Article  CAS  Google Scholar 

  10. Liao HG, Xiao YJ, Zhang HK, Liu PL, You KY, Luo H, Wei C (2012) Catal Comm 19:80

    Article  CAS  Google Scholar 

  11. Pereira MFR, Figueiredo JL, Oerfaó JJM, Serp P, Kalck P, Kihn Y (2004) Carbon 42:2807

    Article  CAS  Google Scholar 

  12. Joseyacaman M, Mikiyoshida M, Rendon L, Santiesteban JG (1993) Appl Phys Lett 62:657

    Article  CAS  Google Scholar 

  13. Endo M, Takeuchi K, Kobori K, Takahashi K, Kroto HW, Sarkar A (1995) Carbon 33:873

    Article  CAS  Google Scholar 

  14. Singh C, Shaffer M SP, Windle AH (2003) Carbon 41:359

    Article  CAS  Google Scholar 

  15. Collins PG (2009) Defects and disorder in carbon nanotubes. In: Narlikar AV, Fu YY (eds) Oxford handbook of nanoscience and technology: frontiers and advances. Oxford University Press, Oxford

  16. Dresselhaus MA, Dresselhaus G, Saito G, Joriod A (2005) Phys Rep 409:47

    Article  Google Scholar 

  17. Hussain S, Jha P, Chouksey A, Raman R, Islam S, Islam ST, Choudhary PK, Harsh K (2011) J Mod Phys 2:538

    Article  CAS  Google Scholar 

  18. Reddy ALM, Ramaprabhu S (2007) Int J Hydrogen Energy 32:3998

    Article  CAS  Google Scholar 

  19. Ono Y (1992) Catal Rev Sci Eng 34:179

    Article  CAS  Google Scholar 

  20. Solymosi F (2005) Springer 25

  21. Rostrup-Nielsen JR (1988) Stud Surf Sci Catal 36:73

    Article  CAS  Google Scholar 

  22. Rostrup-Nielsen JR, Aasberg-Petersen K, Schoubye PS (1997) Stud Surf Sci Catal 107:473

    Article  CAS  Google Scholar 

  23. Solymosi F, Németh R (1999) Catal Lett 62:197

    Article  CAS  Google Scholar 

  24. Zhu H, Rosenfeld DC, Anjum DH, Sangaru SS, Saih Y, Ould-Chikh S (2015) J Catal 329:291

    Article  CAS  Google Scholar 

  25. Solymosi F, Tolmacsov P, Süli Zakar T (2005) J Catal 233:51

    Article  CAS  Google Scholar 

  26. Lear T, Marshall R, Lopez-Sanchez JA, Jackson SD, Klapötke TM, Bäumer M, Rupprechter G, Freund HJ, Lennon D (2005) J Chem Phys 123:174706

    Article  Google Scholar 

  27. Reinhold-López K, Braeuer A, Romanna B, Popovska-Leipertz N, Leipert A (2015) Procedia Eng 102:190

    Article  Google Scholar 

  28. Bokobza L, Bruneel JL, Couzi M (2014) Vib Spectrosc 74:57

    Article  CAS  Google Scholar 

  29. Machado FM, Bergmann CP, Lima EC, Adebayo MA, Fagan SB (2014) Mat Res 17 151

    Article  Google Scholar 

  30. Fanning PE, Venice MA (1993) Carbon 30:721

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported in the framework of the Center of Applied Materials Science and Nano-Technology at the University of Miskolc. This work was also supported by National Research, Development and Innovation Office—NKFIH (PD 115769).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Vanyorek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 1972 KB)

Supplementary material 2 (TIF 1972 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanyorek, L., Halasi, G., Pekker, P. et al. Characterization and Catalytic Activity of Different Carbon Supported Pd Nanocomposites. Catal Lett 146, 2268–2277 (2016). https://doi.org/10.1007/s10562-016-1857-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1857-8

Keywords

Navigation