Skip to main content
Log in

Comparative Studies of Bimetallic Ru–Cu, Rh–Cu, Ag–Cu, Ir–Cu Catalysts Supported on ZnO–Al2O3, ZrO2–Al2O3 Systems

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This paper interrogates the catalytic properties of monometallic copper and various bimetallic Ru–Cu, Rh–Cu, Ag–Cu, Ir–Cu catalysts supported on binary oxide ZrO2–Al2O3 or ZnO–Al2O3 in oxy-steam reforming of methanol reaction. X-ray diffraction, specific surface area and porosity, temperature programmed reduction and temperature programmed desorption were used to characterize monometallic and bimetallic copper supported catalysts. The promoting effect of noble metals on reducibility and catalytic properties of copper catalyst was proven. The activity results showed that rhodium doped copper catalysts supported on ZnO–Al2O3 exhibited the highest conversion of methanol and a high selectivity towards main products of the reaction demonstrating its potential application in fuel cell technology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mierczynski P, Vasilev K, Mierczynska A, Maniukiewicz W, Ciesielski R, Rogowski J, Szynkowska IM, Trifonov AY, Dubkov SV, Gromov DG, Maniecki TP (2016) The effect of gold on modern bimetallic Au–Cu/MWCNT catalysts for the oxy-steam reforming of methanol. Catal Sci Technol 6:4168–4183

    Article  CAS  Google Scholar 

  2. Mierczynski P, Vasilev K, Mierczynska A, Maniukiewicz W, Szynkowska MI, Maniecki TP (2016) Bimetallic Au–Cu, Au–Ni catalysts supported on MWCNTs for oxy-steam reforming of methanol. Appl Catal B 185:281–294

    Article  CAS  Google Scholar 

  3. Mierczynski P, Ciesielski R, Kedziora A, Nowosielska M, Kubicki J, Maniukiewicz W, Czylkowska A, Maniecki T (2015) Monometallic copper catalysts supported on multi-walled carbon nanotubes for the oxy-steam reforming of methanol. React Kinet Mech Catal 117:675–691

    Article  Google Scholar 

  4. López P, Mondragón-Galicia G, Espinosa-Pesqueira ME, Mendoza-Anaya D, Fernández ME, Gómez-Cortés A, Bonifacio J, Martínez-Barrera G, Pérez-Hernández R (2012) Hydrogen production from oxidative steam reforming of methanol: effect of the Cu and Ni impregnation on ZrO2 and their molecular simulation studies. Int J Hydrog Energy 37:9018–9027

    Article  Google Scholar 

  5. Pérez-Hernández R, Gutiérrez-Martínez A, Gutiérrez-Wing CE (2007) Effect of Cu loading on for hydrogen production by oxidative steam reforming of methanol. Int J Hydrog Energy 32:2888–2894

    Article  Google Scholar 

  6. Pérez-Hernández R, Galicia GM, Anaya DM, Palacios J, Angeles-Chavez C, Arenas-Alatorre J (2008) Synthesis and characterization of bimetallic Cu–Ni/ZrO2 nanocatalysts: H2 production by oxidative steam reforming of methanol. Int J Hydrog Energy 33:4569–4576

    Article  Google Scholar 

  7. Pérez-Hernández R, Gutiérrez-Martínez A, Espinosa-Pesqueira ME, Estanislao ML, Palacios J (2015) Effect of the bimetallic Ni/Cu loading on the ZrO2 support for H2 production in the autothermal steam reforming of methanol. Catal Today 250:166–172

    Article  Google Scholar 

  8. Chang C-C, Chang C-T, Chiang S-J, Liaw B-J, Chen Y-Z (2010) Oxidative steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts. Int J Hydrog Energy 35:7675–7683

    Article  CAS  Google Scholar 

  9. Turco M, Bagnasco G, Costantino U, Marmottini F, Montanari T, Ramis G, Busca G (2004) Production of hydrogen from oxidative steam reforming of methanol: I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor. J Catal 228:43–55

    CAS  Google Scholar 

  10. Turco M, Bagnasco G, Cammarano C, Senese P, Costantino U, Sisani M (2007) Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: the role of Cu and the dispersing oxide matrix. Appl Catal B 77:46–57

    Article  CAS  Google Scholar 

  11. Pérez-Hernández R, Gutiérrez-Martínez A, Palacios J, Vega-Hernández M, Rodríguez-Lugo V (2011) Hydrogen production by oxidative steam reforming of methanol over Ni/CeO2–ZrO2 catalysts. Int J Hydrog Energy 36:6601–6608

    Article  Google Scholar 

  12. Perez-Hernandez R, Mondragon-Galicia G, Maravilla AA, Palacios J (2013) Nano-dimensional CeO2 nanorods for high Ni loading catalysts: H2 production by autothermal steam reforming of methanol reaction. Phys Chem Chem Phys 15:12702–12708

    Article  CAS  Google Scholar 

  13. Liu S, Takahashi K, Eguchi H, Uematsu K (2007) Hydrogen production by oxidative methanol reforming on Pd/ZnO: catalyst preparation and supporting materials. Catal Today 129:287–292

    CAS  Google Scholar 

  14. Liu S, Takahashi K, Fuchigami K, Uematsu K (2006) Hydrogen production by oxidative methanol reforming on Pd/ZnO: catalyst deactivation. Appl Catal A 299:58–65

    Article  CAS  Google Scholar 

  15. Chang C-C, Hsu C-C, Chang C-T, Chen Y-P, Liaw B-J, Chen Y-Z (2012) Effect of noble metal on oxidative steam reforming of methanol over CuO/ZnO/Al2O3 catalysts. Int J Hydrog Energy 37:11176–11184

    Article  CAS  Google Scholar 

  16. Mierczynski P, Vasilev K, Mierczynska A, Maniukiewicz W, Maniecki T (2013) The effect of ZnAl2O4 on the performance of Cu/ZnxAlyOx + 1.5y supported catalysts in steam reforming of methanol. Top Catal 56:1015–1025

    Article  CAS  Google Scholar 

  17. Maniecki T, Mierczynski P, Maniukiewicz W, Bawolak K, Gebauer D, Jozwiak W (2009) Bimetallic Au–Cu, Ag–Cu/CrAl3O6 catalysts for methanol synthesis. Catal Lett 130:481–488

    Article  CAS  Google Scholar 

  18. Mierczynski P, Ciesielski R, Kedziora A, Zaborowski M, Maniukiewicz W, Nowosielska M, Szynkowska MI, Maniecki TP (2014) Novel Pd–Cu/ZnAl2O4–ZrO2 catalysts for methanol synthesis. Catal Lett 144:723–735

    Article  CAS  Google Scholar 

  19. Mierczynski P, Kaczorowski P, Ura A, Maniukiewicz W, Zaborowski M, Ciesielski R, Kedziora A, Maniecki T (2014) Promoted ternary CuO–ZrO2–Al2O3 catalysts for methanol synthesis. Cent Eur J Chem 12:206–212

    Article  CAS  Google Scholar 

  20. Schuyten S, Guerrero S, Miller JT, Shibata T, Wolf EE (2009) Characterization and oxidation states of Cu and Pd in Pd–CuO/ZnO/ZrO2 catalysts for hydrogen production by methanol partial oxidation. Appl Catal A 352:133–144

    Article  CAS  Google Scholar 

  21. Mierczynski P, Vasilev K, Mierczynska A, Maniukiewicz W, Maniecki TP (2014) Highly selective Pd–Cu/ZnAl2O4 catalyst for hydrogen production. Appl Catal A 479:26–34

    Article  CAS  Google Scholar 

  22. Bae JW, Kang S-H, Dhar GM, Jun K-W (2009) Effect of Al2O3 content on the adsorptive properties of Cu/ZnO/Al2O3 for removal of odorant sulfur compounds. Int J Hydrog Energy 34:8733–8740

    Article  CAS  Google Scholar 

  23. Pasupulety N, Driss H, Alhamed YA, Alzahrani AA, Daous MA, Petrov L (2015) Studies on Au/Cu–Zn–Al catalyst for methanol synthesis from CO2. Appl Catal A Gen 504:308–318

    Article  CAS  Google Scholar 

  24. Yang L, Lin G-D, Zhang H-B (2013) Highly efficient Pd–ZnO catalyst doubly promoted by CNTs and Sc2O3 for methanol steam reforming. Appl Catal A 455:137–144

    Article  CAS  Google Scholar 

  25. Chang F-W, Ou T-C, Roselin LS, Chen W-S, Lai S-C, Wu H-M (2009) Production of hydrogen by partial oxidation of methanol over bimetallic Au–Cu/TiO2–Fe2O3 catalysts. J Mol Catal A Chem 313:55–64

    Article  CAS  Google Scholar 

  26. Mantri D, Aghalayam P (2007) Detailed surface reaction mechanism for reduction of NO by CO. Catal Today 119:88–93

    Article  CAS  Google Scholar 

  27. Shimokawabe M, Asakawa H, Takezawa N (1990) Characterization of copper/zirconia catalysts prepared by an impregnation method. Appl Catal 59:45–58

    Article  CAS  Google Scholar 

  28. Bellido JDA, Assaf EM (2009) Reduction of NO by CO on Cu/ZrO2/Al2O3 catalysts: characterization and catalytic activities. Fuel 88:1673–1679

    Article  CAS  Google Scholar 

  29. Nitta Y, Suwata O, Ikeda Y, Okamoto Y, Imanaka T (1994) Copper–zirconia catalysts for methanol synthesis from carbon dioxide: effect of ZnO addition to Cu–ZrO2 catalysts. Catal Lett 26:345–354

    Article  CAS  Google Scholar 

  30. Mierczynski P, Maniecki T, Maniukiewicz W, Jozwiak W (2011) Cu/Cr2O3 center dot 3Al(2)O(3) and Au–Cu/Cr2O3 center dot 3Al(2)O(3) catalysts for methanol synthesis and water gas shift reactions. React Kinet Mech Catal 104:139–148

    Article  CAS  Google Scholar 

  31. Mierczynski P, Chalupka KA, Maniukiewicz W, Kubicki J, Szynkowska MI, Maniecki TP (2015) SrAl2O4 spinel phase as active phase of transesterification of rapeseed oil. Appl Catal B 164:176–183

    Article  CAS  Google Scholar 

  32. Mierczynski P, Ciesielski R, Kedziora A, Maniukiewicz W, Shtyka O, Kubicki J, Albinska J, Maniecki TP (2015) Biodiesel production on MgO, CaO, SrO and BaO oxides supported on (SrO)(Al2O3) mixed oxide. Catal Lett 145:1196–1205

    Article  CAS  Google Scholar 

  33. Hareesh HN, Minchitha KU, Nagaraju N, Kathyayini N (2015) Catalytic role of Cu(I) species in Cu2O/CuI supported on MWCNTs in the oxidative amidation of aryl aldehydes with 2-aminopyridines. Chin J Catal 36:1825–1836

    Article  CAS  Google Scholar 

  34. Twigg MV, Spencer MS (2003) Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis. Top Catal 22:191–203

    Article  CAS  Google Scholar 

  35. Hereijgers BPC, Weckhuysen BM (2009) Selective oxidation of methanol to hydrogen over gold catalysts promoted by alkaline-earth-metal and lanthanum oxides. ChemSusChem 2:743–748

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially funded by Polish Ministry of Science and Higher Education within the “Iuventus Plus” Programme (2015–2017) (Project No. 0305/IP2/2015/73). Pawel Mierczynski thanks Lodz University of Technology for a scholarship (Własny Fundusz Stypendialny PŁ programme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Mierczynski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mierczynski, P. Comparative Studies of Bimetallic Ru–Cu, Rh–Cu, Ag–Cu, Ir–Cu Catalysts Supported on ZnO–Al2O3, ZrO2–Al2O3 Systems. Catal Lett 146, 1825–1837 (2016). https://doi.org/10.1007/s10562-016-1804-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1804-8

Keywords

Navigation