Skip to main content

Advertisement

Log in

Ceria-promoted Ni–Co/Al2O3 Catalysts for n-dodecane Steam Reforming

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalytic steam reforming of long-chain hydrocarbons has drawn great attention for hydrogen production or heat removement, which can be used for on-board/on-site fuel cell or hypersonic vehicle thermal protection. In this study, a series of Ni–Co bi-metal catalysts supported on Al2O3 with different ceria loadings have been prepared by a two-step impregnation method. Physical states and chemical properties of the as-synthesized catalysts have been characterized by XRD, nitrogen adsorption–desorption, H2-TPR and TEM. Steam reforming of n-dodecane has been carried out to evaluate catalytic performance of the obtained catalysts at 700 °C and atmospheric pressure in a fixed-bed tubular reactor. Both effects of CeO2 addition and Ni–Co alloying have been investigated to enhance catalytic activity and stability. After optimization, the catalyst promoted by 5 wt% ceria (NC/5CeAl) exhibits the highest conversion of n-dodecane (89 %) and the lowest coke deposition (reduced by 50 % compared with the one without ceria loading). The improvement in the performance of n-dodecane steam reforming is ascribed to the reduction of Ni particle size on alumina and the acceleration of coke gasification via redox, which has been achieved by Ni–Co alloying and CeO2 promotion.

Graphical Abstract

Ceria-promoted Ni-Co/Al2O3 catalysts have been developed and applied for n-dodecane steam reforming. The obtained results showed that ceria addition and Ni–Co alloying play an important role in n-dodecane steam reforming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Takashi Suzuki TY, Hiko-ichi iwanami (2000) Int J Hydrog Energy 25:119

    Article  Google Scholar 

  2. Ishihara A, Qian EW, Finahari IN, Sutrisna IP, Kabe T (2005) Fuel 84:1462

    CAS  Google Scholar 

  3. Yu X, Zhang S, Wang L, Jiang Q, Li S, Tao Z (2006) Fuel 85:1708

    Article  CAS  Google Scholar 

  4. Strohm JJ, Zheng J, Song C (2006) J Catal 238:309

    Article  CAS  Google Scholar 

  5. Hou L, Jia Z, Gong J, Zhou Y, Piao Y (2012) J Propul Power 28:453

    Article  CAS  Google Scholar 

  6. Hou L-Y, Dong N, Ren Z-Y, Zhang B, Hu S-L (2014) Fuel Process Technol 128:128

    Article  CAS  Google Scholar 

  7. Rostrup-Nielsen JR, Sehested J, Nørskov JK (2002) Adv Catal 47:65

    CAS  Google Scholar 

  8. Sehested J (2006) Catal Today 111:103

    Article  CAS  Google Scholar 

  9. Bartholomew CH (1982) Catal Rev Sci Eng 24:67

    Article  CAS  Google Scholar 

  10. Liu C, Ye J, Jiang J, Pan Y (2011) Chem Cat Chem 3:529

    CAS  Google Scholar 

  11. Li S, Gong J (2014) Chem Soc Rev 43:7245

    Article  CAS  Google Scholar 

  12. Son IH, Lee SJ, Song IY, Jeon WS, Jung I, Yun DJ, Jeong D-W, Shim J-O, Jang W-J, Roh H-S (2014) Fuel 136:194

    Article  CAS  Google Scholar 

  13. Sugisawa M, Takanabe K, Harada M, Kubota J, Domen K (2011) Fuel Process Technol 92:21

    Article  CAS  Google Scholar 

  14. Nawadee Srisiriwat ST, Vidya Sagar, Akyurtlu J, Akyurtlu A, Blankson I (2010) Ind Eng Chem Res 49:8164

    Article  Google Scholar 

  15. Srisiriwat N, Therdthianwong S, Therdthianwong A (2009) Int J Hydrog Energy 34:2224

    Article  CAS  Google Scholar 

  16. Liu X, Zhou K, Wang L, Wang B, Li Y (2009) JACS 131:3140

    Article  CAS  Google Scholar 

  17. Zhou Y, Zhou J (2012) J Phys Chem C 116:9544

    Article  CAS  Google Scholar 

  18. Soykal II, Sohn H, Singh D, Miller JT, Ozkan US (2014) ACS Catal 4:585

    Article  CAS  Google Scholar 

  19. Wang SB, G.Q(Max)Lu (1998) Appl Catal B 19:267

  20. Koo KY, Roh HS, Jung UH, Yoon WL (2009) Catal Letters 130:217

    Article  CAS  Google Scholar 

  21. Iriondo A, Barrio VL, Cambra JF, Arias PL, Guemez MB, Sanchez-Sanchez MC, Navarro RM, Fierro JLG (2010) Int J Hydrog Energy 35:11622

    Article  CAS  Google Scholar 

  22. Kimura T, Miyazawa T, Nishikawa J, Kado S, Okumura K, Miyao T, Naito S, Kunimori K, Tomishige K (2006) Appl Catal B 68:160

    Article  CAS  Google Scholar 

  23. Tomishige K, Kimura T, Nishikawa J, Miyazawa T, Kunimori K (2007) Catal Commun 8:1074

    Article  CAS  Google Scholar 

  24. Nishikawa J, Nakamura K, Asadullah M, Miyazawa T, Kunimori K, Tomishige K (2008) Catal Today 131:146

    Article  CAS  Google Scholar 

  25. Nishikawa J, Miyazawa T, Nakamura K, Asadullah M, Kunimori K, Tomishige K (2008) Catal Commun 9:195

    Article  CAS  Google Scholar 

  26. Takanabe K, Nagaoka K, Nariai K, Aika K-I (2005) J Catal 232:268

    Article  CAS  Google Scholar 

  27. Kim DH, Kang JS, Lee YJ, Park NK, Kim YC, Hong SI, Moon DJ (2008) Catal Today 136:228

    Article  CAS  Google Scholar 

  28. Maluf S, Assaf E (2009) Fuel 88:1547

    Article  CAS  Google Scholar 

  29. Wang L, Li D, Koike M, Watanabe H, Xu Y, Nakagawa Y, Tomishige K (2013) Fuel 112:654

    Article  CAS  Google Scholar 

  30. Sengupta S, Ray K, Deo G (2014) Int J Hydrog Energy 39:11462

    Article  CAS  Google Scholar 

  31. Wang Z, Wang C, Chen S, Liu Y (2014) Int J Hydrog Energy 39:5644

    Article  CAS  Google Scholar 

  32. Li D, Koike M, Wang L, Nakagawa Y, Xu Y, Tomishige K (2014) Chem Sus Chem 7:510

    Article  CAS  Google Scholar 

  33. Li D, Tamura M, Nakagawa Y, Tomishige K (2015) Bioresour Technol 178:53

    Article  Google Scholar 

  34. Li D, Koike M, Chen J, Nakagawa Y, Tomishige K (2014) Int J Hydrog Energy 39:10959

    Article  CAS  Google Scholar 

  35. Ma H, Zeng L, Tian H, Li D, Wang X, Li X, Gong J (2015) Appl Catal B 181:321

    Article  Google Scholar 

  36. Bizkarra K, Barrio V, Yartu A, Requies J, Arias P, Cambra J (2015) Int J Hydrog Energy 40:5272

    Article  CAS  Google Scholar 

  37. Alipour Z, Rezaei M, Meshkani F (2014) Fuel 129:197

    Article  CAS  Google Scholar 

  38. Profeti LP, Ticianelli EA, Assaf EM (2009) Int J Hydrog Energy 34:5049

    Article  CAS  Google Scholar 

  39. Frusteri F, Freni S, Chiodo V, Donato S, Bonura G, Cavallaro S (2006) Int J Hydrog Energy 31:2193

    Article  CAS  Google Scholar 

  40. Sánchez-Sánchez M, Navarro R, Fierro J (2007) Int J Hydrog Energy 32:1462

    Article  Google Scholar 

  41. Juan-Juan J, Roman-Martinez M, Illán-Gómez M (2009) Appl Catal A 355:27

    Article  CAS  Google Scholar 

  42. Hu D, Gao J, Ping Y, Jia L, Gunawan P, Zhong Z, Xu G, Gu F, Su F (2012) Ind Eng Chem Res 51:4875

    Article  CAS  Google Scholar 

  43. Tang M, Xu L, Fan M (2014) Int J Hydrog Energy 39:15482

    Article  CAS  Google Scholar 

  44. Son IH, Lee SJ, Roh H-S (2014) Int J Hydrog Energy 39:3762

    Article  CAS  Google Scholar 

  45. Lee S, Bae M, Bae J, Katikaneni SP (2015) Int J Hydrog Energy 40:3207

    Article  CAS  Google Scholar 

  46. Tao J, Zhao L, Dong C, Lu Q, Du X, Dahlquist E (2013) Energies 6:3284

    Article  CAS  Google Scholar 

  47. Natesakhawat S, Watson RB, Wang X, Ozkan US (2005) J Catal 234:496

    Article  CAS  Google Scholar 

  48. Basagiannis A, Verykios X (2006) Appl Catal A 308:182

    Article  CAS  Google Scholar 

  49. Luisetto I, Tuti S, Battocchio C, Mastro SL, Sodo A (2015) Appl Catal A 500:12

    Article  CAS  Google Scholar 

  50. Li D, Zeng L, Li X, Wang X, Ma H, Assabumrungrat S, Gong J (2015) Appl Catal B 176–177:532

    Article  Google Scholar 

  51. Aiello R, Fiscus JE, zur Loye HC, Amiridis MD (2000) Appl Catal A 192:227

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Mr Yawei Shi and Miss Yuan Qiu for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Li, L., Wu, C. et al. Ceria-promoted Ni–Co/Al2O3 Catalysts for n-dodecane Steam Reforming. Catal Lett 146, 1780–1791 (2016). https://doi.org/10.1007/s10562-016-1802-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1802-x

Keywords

Navigation