Skip to main content
Log in

Synthesis and Characterization of Immobilized Lipase on Fe3O4 Nanoparticles as Nano biocatalyst for the Synthesis of Benzothiazepine and Spirobenzothiazine Chroman Derivatives

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A retrievable nanostructure heterogeneous catalyst, based on lipase (lipase from the fungus Aspergillus niger), namely Fe3O4-bonded lipase (Fe3O4 NPs@ lipase) was prepared in nano size and fully characterized by several techniques such as Fourier transform infrared spectroscopy, X-ray diffraction, Scanning electron microscopy, Transmission electron microscopy and Vibrating sample magnetometer. The retrievable nanostructure catalyst was asserted to be an efficient catalyst in the synthesis of benzothiazepine and spirobenzothiazine chroman derivatives through three-component reaction of coumarine-3-carboxylic acid derivatives, 2-aminothiophenol, and alkyl isocyanides at room temperature under mild conditions.

Graphical Abstract

 

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Scheme 3
Scheme 4
Fig. 8

Similar content being viewed by others

References

  1. Lingampalle DL, Netankar PD, Jagrut VB, Mane RA (2014) F PEG- 400 mediated synthesis of 1, 5-benzothiazepines. Chem Biol Interface 5:287–291

    Google Scholar 

  2. Rathore BS, Kumar M (2006) Synthesis of 7-chloro-5-trifluoromethyl/7-fluoro/7-trifluoromethyl4H-1,4-benzothiazines as antimicrobial agents. Bioorg Med Chem 14:5678–5682

    Article  CAS  Google Scholar 

  3. Barazarte A, Camacho J, Dominguez J, Lobo G, Gamboa N, Rodrigues J, Capparelli MV, Alvarez-Larena A, Andujar S, Enriz D, Charries J (2008) Synthesis, antimalarial activity, structure–activity D relationship analysis of thin-[3,2-b] benzothiazine S, S-dioxide analogs. Bioorg Med Chem 16:3661–3674

    Article  CAS  Google Scholar 

  4. Chia EW, Pearce AN, Berridge MV, Larsen L, Perry NB, Sansom CE, Godfrey CA, Hanton LR, Lu GL, Walton M, Denny WA, Webb VL, Copp BR, Harper JL (2008) Synthesis and anti-inflammatory structure–activity relationships of thiazine–quinoline–quinones: inhibitors of the neutrophil respiratory burst in a model of acute gouty arthritis. Bioorg Med Chem 16:9432–9442

    Article  CAS  Google Scholar 

  5. Znabet A, Polak MM, Janssen E, De Kanter FJJ, Turner NJ, Orru RVA, Ruijter E (2010) A highly efficient synthesis of telaprevir by strategic use of biocatalysis and multicomponent reactions. Chem Commun 46:7918–7920

    Article  CAS  Google Scholar 

  6. Znabet A, Ruijter E, De Kanter FJJ, Koehler V, Helliwell M, Turner NJ, Arru RVA (2010) Highly stereoselective synthesis of substituted prolyl peptides using a combination of biocatalytic desymmetrization and multicomponent reaction. Angew Chem Int Edit 49:5289–5292

    Article  CAS  Google Scholar 

  7. Znabet A, Zonneveld J, Janssen E, De Kanter FJJ, Helliwell M, Turner NJ, Ruijter E, Orru RVA (2010) Asymmetric synthesis of synthetic alkaloids by a tandem biocatalysis/Ugi/Pictet–Spengler-type cyclization sequencew. Chem Commun 46:7706–7708

    Article  CAS  Google Scholar 

  8. Szymanski W, Ostaszewski R (2008) Toward stereocontrolled, chemoenzymatic synthesis of unnatural peptides. Tetrahedron 64:3197–3203

    Article  CAS  Google Scholar 

  9. Kzossowski S, Wiraszka B, Berlozecki S, Ostaszewski R (2013) Model studies on the first enzyme-catalyzed ugi reaction. Org Lett 15:566–569

    Article  Google Scholar 

  10. Kumar A, Maurya RA (2007) An efficient bakers’ yeast catalyzed synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Tetrahedron Lett 48:4569–4571

    Article  CAS  Google Scholar 

  11. Mhetras N, Bastawde K, Gokhale D (2009) Purification and characterization of acidic lipase from Aspergillus niger NCIM 1207. Bioresour Technol 100:1486–1490

    Article  CAS  Google Scholar 

  12. Itoh T, Kuroda K, Tomosada M, Takagi Y (1991) Design of a-alkyl @-hydroxy esters suitable for providing optical resolution by lipase hydrolysis. J Org Chem 56:797–804

    Article  CAS  Google Scholar 

  13. Ng-Young-Chen MC, Serreqi AN, Huang Q, Kazlauskas RJ (1994) Kinetic resolution of pipecolic acid using partially-purified lipase from Aspergillus niger. J Org Chem 59:2075–2081

    Article  Google Scholar 

  14. Ranganathan SV, Narasimhan SL, Muthukumar K (2008) An overview of enzymatic production of biodiesel. Bioresour Technol 99:3975–3981

    Article  CAS  Google Scholar 

  15. Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  CAS  Google Scholar 

  16. Iso M, Chen B, Eguchi M, Kudo T, Shrestha S (2001) Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Catal B 16:53–58

    Article  CAS  Google Scholar 

  17. Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026

    Article  CAS  Google Scholar 

  18. Dyal A, Loos K, Noto M, Chang SW, Spagnoli C (2003) Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. J Am Chem Soc 125:1684–1685

    Article  CAS  Google Scholar 

  19. Huang H, Liao MH, Chen DH (2003) Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol Prog 19:1095–1100

    Article  CAS  Google Scholar 

  20. Palocci C, Chronopoulou L, Venditti I, Cernia E, Diociaiuti M, di Fratod- I, Russo V (2007) Lipolytic enzymes with improved activity and selectivity upon adsorption on polymeric nanoparticles. Biomacromolecules 8:3047–3053

    Article  CAS  Google Scholar 

  21. Kim M, Ham HO, Oh SD, Park HG, Chang HN, Choi SH (2006) Immobilization of Mucor javanicus lipase on effectively functionalized silica nanoparticles. J Mol Catal B 39:62–68

    Article  CAS  Google Scholar 

  22. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  23. Lu AH, Salabas EL, Schuth F (2007) Magnetische nanopartikel: synthese, stabilisierung, funktionalisierung und anwendung. Angew Chem 119:1242–1266

    Article  Google Scholar 

  24. Xie W, Zang X (2016) Immobilized lipase on core–shell structured Fe3O4–MCM-41 nanocomposites as a magnetically recyclable biocatalyst for interesterification of soybean oil and lard. Food Chem 194:1283–1292

    Article  CAS  Google Scholar 

  25. Xie W, Wang J (2014) Enzymatic production of biodiesel from soybean oil by using immobilized lipase on Fe3O4/poly (styrene-methacrylic acid) magnetic microsphere as a biocatalyst. Energy Fuels 28:2624–2631

    Article  CAS  Google Scholar 

  26. Xie W, Wang J (2012) Immobilization lipase on magnetic chitosan microspheres for transsterification of soybean oil. Biomass Bioenergy 36:373–380

    Article  CAS  Google Scholar 

  27. Deng X, Cao Sh, Li N, Wu H, Smith TJ, Zong M, Lou W (2016) A magnetic biocatalyst based on mussel-inspired polydopamine and its acylation of dihydromyricetin. Chin J Catal 37:584–595

    Article  CAS  Google Scholar 

  28. Cao Sh, Xu H, Li X, Lou W, Zong M (2015) Novel papain@magnetic nanocrystalline cellulose nano-biocatalyst: a highly efficient biocatalyst for dipeptide biosynthesis in deep eutectic solvents. ACS Sustain Chem Eng 3:1589–1599

    Article  CAS  Google Scholar 

  29. Cao Sh, Li X, Lou W, Zong M (2014) Preparation of novel magnetic cellulose nanocrystal and its efficient use for enzyme immobilization. J Mater Chem B 2:5522–5530

    Article  CAS  Google Scholar 

  30. Chen Zh, Sun Y, Zhang W, Yang T, Chen L, Yang R, Zhou N (2016) Controllable synthesis of amine-functionalized Fe3O4 polyhedral for lipase immobilization. CrystEngComm 18:3124–3129

    Article  CAS  Google Scholar 

  31. Chen Zh, Wang Zh, Xu W, Jin L, Zha J, Tao T, Lin Y (2014) Synthesis of amine-functionalized Fe3O4@C nanoparticles for lipase immobilization. J Mater Chem A 2:18339–18344

    Article  CAS  Google Scholar 

  32. Liu X, Ma Z, Xing J, Liu H, Magn J (2004) Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. J Magn Magn Mater 270:1–6

    Article  CAS  Google Scholar 

  33. Liu X, Xing J, Guan Y, Shan G, Liu H (2004) Synthesis of amino-silane modified superparamagnetic silica supports and their use for protein immobilization. Coll Surf A 238:127–131

    Article  CAS  Google Scholar 

  34. Shaw SY, Chen YJ, Ou JJ, Ho L (2006) Preparation and characterization of Pseudomonas putida esterase immobilized on magnetic nanoparticles. Enzyme Microb Technol 39:1089–1095

    Article  CAS  Google Scholar 

  35. Baharfar R, Shariati N (2014) An efficient one-pot synthesis of novel isatin-based 2-amino thiazol-4-one conjugates using MgO nanoparticles in aqueous media. C R Chim 17:413–419

    Article  CAS  Google Scholar 

  36. Baharfar R, Alinezhad H, Azimi R (2015) Use of DABCO-functionalized mesoporous SBA-15 as catalyst for efficient synthesis of kojic acid derivatives, potential antioxidants. Res Chem Intermed 41:8637–8650

    Article  CAS  Google Scholar 

  37. Azimi R, Baharfar R (2014) DABCO-functionalized mesoporous SBA-15: an efficient and recyclable catalyst for the synthesis of spiro-pyranoxindoles as antioxidant agents. Can J Chem 92:1163–1168

    Article  CAS  Google Scholar 

  38. Shan Z, Yang WSh, Zhang X, Ye QMH (2007) Preparation and characterization of carboxyl-group functioned superparamagnetic nanoparticles and the potential for bio-applications. J Braz Chem Soc 18:1329–1335

    Article  CAS  Google Scholar 

  39. Xie W, Ma N (2009) Immobilized lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energy Fuels 23:1347–1353

    Article  CAS  Google Scholar 

  40. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  41. Zhao G, Wang J, Li Y, Chen X, Liu Y (2011) Enzymes immobilized on superparamagnetic Fe3O4@clays nanocomposites: preparation, characterization, and a new strategy for the regeneration of supports. J Physl Chem C 115:6350–6359

    Article  CAS  Google Scholar 

  42. Susanti D, Suhartati T, Hadi S (2012) Immobilization of α-amylase from locale bacteria isolate Bacillus Subtilis Itbccb148 with carboxymethyl cellulose (Cm-cellulose). Mod Appl Sci 6:81–86

    Google Scholar 

  43. Yang Z, Domach M, Auger R, Yang FX, Russell AJ (1996) Polyethylene glycol-induced stabilization of subtilisin. Enzyme Microb Technol 18:82–89

    Article  CAS  Google Scholar 

  44. Akbarzadeh R, Amanpour T, Khavasi HR, Bazgir A (2014) Atom-economical isocyanide-based multicomponent synthesis of 2,5-dioxopyrrolidines, spirobenzothiazinechromans and 1,5-benzothiazepines. Tetrahedron 70:169–175

    Article  CAS  Google Scholar 

  45. Quan ZJ, Lv Y, Wang ZJ, Zhang Z, Da YX, Wang XC (2013) Molecular iodine-mediated S–N and C–N cross-coupling and oxidative aromatization of 3,4-dihydropyrimidin-2(1H)-thiones with secondary amines. Tetrahedron Lett 54:1884–1887

    Article  CAS  Google Scholar 

  46. Villemin D, Hammadi M, Martin B (1996) clay catalysis: condensation of orthoesters heterocycles with 0-substituted aminoaromatics into. Synth Commun 26:2895–2899

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Research Council of the University of Mazandaran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robabeh Baharfar.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baharfar, R., Mohajer, S. Synthesis and Characterization of Immobilized Lipase on Fe3O4 Nanoparticles as Nano biocatalyst for the Synthesis of Benzothiazepine and Spirobenzothiazine Chroman Derivatives. Catal Lett 146, 1729–1742 (2016). https://doi.org/10.1007/s10562-016-1797-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1797-3

Keywords

Navigation