Skip to main content
Log in

Tin-Catalyzed Urea Alcoholysis With β-Citronellol: A Simple and Selective Synthesis of Carbamates

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Tin(II) chloride is a stable and water tolerant Lewis acid, commercially available and less corrosive than Brønsted acid catalysts. Our proposal was demonstrated that SnCl2 was an efficient catalyst on the urea alcoholysis with β-citronellol. We investigated the effects of main reaction parameters such as concentration and tin(II) catalyst nature, reagents stoichiometry and reaction temperature. In homogenous conditions with DMSO as solvent, the SnCl2-catalyzed urea alcoholysis reactions under air flux achieved high conversion and selectivity for β-citronellyl carbamate (ca. 90 and 95 %, respectively). Among tin(II) catalysts assessed, SnCl2 was more active due to its total solubility. Possible intermediates of active Sn(II) species were discussed based on the results of catalytic runs and FT-IR spectroscopy measurements of the liquid phase after the reaction. FT-IR spectroscopy data showed that the active species could be a complex of a Sn(II) atom coordinated with N=C=O. This novel and phosgene-free selective process provide an inexpensive and attractive route to synthesize terpenic carbamates through inexpensive and renewable reactant (i.e. urea). Moreover, SnCl2 was also an efficient catalyst on synthesis of β-citronellyl carbonate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Scheme 3
Fig. 10
Scheme 4

Similar content being viewed by others

References

  1. Gallezot P (2007) Catal Today 121:76

    Article  CAS  Google Scholar 

  2. Carari DM, Da Silva MJ (2012) Catal Lett 142:251

    Article  CAS  Google Scholar 

  3. Chapuis C, Jacoby D (2001) Appl Catal A 221:93

    Article  CAS  Google Scholar 

  4. Lenardao EJ, Botteselle GV, Azambuja F, Perin G, Jacob RG (2007) Tetrahedron 63:6671

    Article  CAS  Google Scholar 

  5. Ortar G, Moriello AS, Morera E, Nallia M, Di Marzo V, De Petrocellis L (2014) Bioorg Med Chem Lett 24:5507

    Article  CAS  Google Scholar 

  6. Wua X, Kanga M, Yina Y, Wang F, Zhao N, Xiao F, Wei W, Suna Y (2014) Appl Catal A 473:13

    Article  Google Scholar 

  7. Zhang C, Lu B, Wang X, Zhao J, Cai Q (2012) Catal Sci Technol 2:309

    Google Scholar 

  8. Cornely J, Ham LMS, Meade DE, Dragojlovic V (2003) Green Chem 5:34

    Article  CAS  Google Scholar 

  9. Wang D, Yang B, Zhai X, Zhou L (2007) Fuel Process Technol 88:807

    Article  CAS  Google Scholar 

  10. Wang P, Liu X, Zhue F, Yang B, Alshammari AS, Deng Y (2015) RSC Adv 5:19534

    Article  CAS  Google Scholar 

  11. Saleh RY, Michaelson RC, Suciu EN, Kuhlmann B (1996) US Patent No. 5561094

  12. Bhanage BM, Fujita S, He Y, Ikushima Y, Shirai M, Torii K, Arai M (2002) Catal Lett 83:137

    Article  CAS  Google Scholar 

  13. Leino E, Mäki-Arvela P, Eta V, Murzin DY, Salmi T, Mikkola JP (2010) Appl Catal A 383:1

    Article  CAS  Google Scholar 

  14. Wang M, Wang H, Zhao N, Wei W, Sun Y (2007) Ind Eng Chem Res 46:2683

    Article  CAS  Google Scholar 

  15. Woods G (1994) The ICI polyurethanes book. Wiley, New York

    Google Scholar 

  16. Rice PJ, Coats JR (1994) Pestic Sci 41:195

    Article  CAS  Google Scholar 

  17. Rios ER, Rocha NF, Carvalho AM, Vasconcelos LF, Dias ML, De Sousa DP, de Sousa FC, Fonteles MM (2013) Chem Biol Interact 203:573

    Article  CAS  Google Scholar 

  18. Wuts PGM, Greene TW (2007) Greene’s Protective Groups in organic synthesis. Wiley, Hoboken

    Google Scholar 

  19. El-Zemity SR (2006) J Appl Sci Res 2:86

    Google Scholar 

  20. Da Silva MJ, Da Silva ML, Figueiredo AP, Cardoso AL, Natalino R (2011) J Am Oil Chem Soc 88:1431

    Article  CAS  Google Scholar 

  21. Menezes FL, Guimaraes MDO, Da Silva MJ (2013) Ind Eng Chem Res 52:16709

    Article  CAS  Google Scholar 

  22. Radwan MA, El-Zemity SR, Mohamed SA, Sherby SM (2008) Ecotoxicol Environ Safe 71:889

    Article  CAS  Google Scholar 

  23. Suciu EN, Kuhlmann B, Knudsen GA, Michaelson RC (1998) J Organomet Chem 556:41

    Article  CAS  Google Scholar 

  24. Cardoso AL, Neves SCG, Da Silva MJ (2009) Energ Fuel 23:1718

    Article  CAS  Google Scholar 

  25. Da Silva MJ, Goncalves CE, Laier LO (2011) Catal Lett 141:1111

    Article  Google Scholar 

  26. Yamaguchi S, Motokura K, Sakamoto Y, Miyaji A, Baba T (2014) Chem Commun 50:4600

    Article  CAS  Google Scholar 

  27. Golets M, Ajaikumar S, Blomberg D, Grundberg H, Wärnå J, Salmi T, Mikkola J-P (2012) Appl Catal A 43:435

    Google Scholar 

  28. Ferreira AB, Cardoso AL, Da Silva MJ (2013) Catal Lett 143:1240

    Article  CAS  Google Scholar 

  29. Wang D, Zhang X, Ma J, Yu H, Shen J, Wei W (2016) Catal Sci Technol 6:1530

    Article  CAS  Google Scholar 

  30. Nath M, Pokharia S, Song X, Eng G, Gielen M, Kemmer M, Biesemans M, Willem R, de Vos D (2003) Appl Organometal Chem 17:305

    Article  CAS  Google Scholar 

  31. Aggarwal RC, Singh PP (1964) J Inorg Nucl Chem 26:2185

    Article  CAS  Google Scholar 

  32. Fujita S-I, Yamanishi Y, Arai M (2013) J Catal 297:137

    Article  CAS  Google Scholar 

  33. Zhao W, Peng W, Wang D, Zhao N, Li J, Xiao F, Wei W, Sun Y (2009) Catal Commun 10:655

    Article  CAS  Google Scholar 

  34. Taimsalu P, Wood JL (1984) Spectrochim Acta 20:1043

    Article  Google Scholar 

  35. Leles LA, Zabula AV, Bukalov SS, Koroteev OS, Maslennikova OS, Egorov MP, Nefedov OM (2005) Russ Chem Bull 54:1117

    Article  Google Scholar 

  36. Fujita SI, Yamanishi Y, Arai M (2013) J Catal 297:137

    Article  CAS  Google Scholar 

  37. Wu X, Kanga M, Yina Y, Wanga F, Zhaoa N, Xiao F, Weic W, Suna Y (2014) Appl Catal A 473:13

    Article  CAS  Google Scholar 

  38. Niknam K, Zolfigol MA, Saberi D, Molaee H (2009) J Chin Chem Soc 56:1257

    Article  CAS  Google Scholar 

  39. Abu-Samn RH (1983) J Chem Soc Pak 5:23

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from CAPES, CNPq, and FAPEMIG (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio José da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morais, D.C., da Silva, M.J. Tin-Catalyzed Urea Alcoholysis With β-Citronellol: A Simple and Selective Synthesis of Carbamates. Catal Lett 146, 1517–1528 (2016). https://doi.org/10.1007/s10562-016-1769-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1769-7

Keywords

Navigation