Skip to main content
Log in

A Mini Review on New Emerging Trends for the Synthesis of Adipic Acid from Metal-Nano Heterogeneous Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Mini review summarizes the emerging trends for the synthesis of adipic acid (AA) from metal nano catalysts which is a favourable catalysts for the title reaction. Countless steps are involved with catalysts will reduce the production of by-products and effluents produced in the traditional process. “Catalysis is intended for the protection of environment and quality of life”. Innumerable catalysts have been established Co3O4, Co/SiO2, Co/TiO2, Co-ZSM-5, MCM-Ti, TS-1, Co-ZSM, CoAlPO-11, Fe AlPO11/3, CoSiO2, Co/MgO. The catalysts crops of 1.3–6 % yield with a 98.7 % selectivity. Through the discovery and the vast applications of nanotechnology, a protocol from catalytic community to develop new CNT catalysts for adipic acid synthesis which is one of the most important commercial available aliphatic dicarboxylic acids, it has enormous industrial application in the manufacture of nylon-6, nylon-66. The reaction conditions, parameter, metal loading, ratio of metal, pressure will display key role in determining a selective catalysts for adipic acid synthesis. In the age of nano science CNT catalysts will play a role in replacing old traditional catalysts which will bring a new change in catalytic science defined as “Age of Nano- Science/Nano-Catalysis”. It is already renovating the science for the synthesis of AA with Nano-Catalysts i.e. CNT with metals. Through the expected impact brought by nanotechnology on new material, new characteristics and new devices, new applications for the synthesis of adipic acid is required to avoid pollution in main conventional process and established precision measurement technologies, the top priority task for the technically advanced countries is to convert the characteristic of nanotechnology into concrete economical effectiveness in practical application for the manufacture of AA and many more value added products which are useful in domestic purpose.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ong JK, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Science 287:622

    Article  Google Scholar 

  2. Tans SJ, Verschueren RM, Dekker C (1998) Nature 393:49

    Article  CAS  Google Scholar 

  3. Hodes G (2007) Adv Mater 19:639

    Article  CAS  Google Scholar 

  4. Planeix JM, Coustel N, Coq B, Brotons V, Kumbhar PS, Dutartre R (1994) J Am Chem Soc 116:7935

    Article  CAS  Google Scholar 

  5. Saito S (1997) Science 278:77

    Article  CAS  Google Scholar 

  6. Kim P, Lieber CM (1999) Science 286:2148

    Article  CAS  Google Scholar 

  7. Che G, Lakshmi BB, Fisher ER, Martin C (1998) Nature 393:346

    Article  CAS  Google Scholar 

  8. Collins PG, Zettle A, Bando H, Thess A, Smally RE (1997) Science 278:100

    Article  CAS  Google Scholar 

  9. Schadler LS, Giannaris SC, Ajayan PM (1998) Appl Phys lett 73:3842

    Article  CAS  Google Scholar 

  10. Biercuk MJ (2002) Appl Phys Lett 80:2767

    Article  CAS  Google Scholar 

  11. Wang WK, Cao LM (2001) Russ Phys 44:178

    Article  CAS  Google Scholar 

  12. Davis DD, Kemp DR (1991) In: Kroschwitz JJ, Howe-Grant M (eds) Kirk-Othmer encyclopedia of chemical technology, vol 1. Wiley, New York, p 466

    Google Scholar 

  13. Thiemens MH, Trogler WC (1991) Science 251:932

    Article  CAS  Google Scholar 

  14. Reimer RA, Slaten Ceipan M, Lower MW, Tomlinson PE (1994) Environ Prog 13:134

    Article  CAS  Google Scholar 

  15. Montzka SA, Dlugokencky EJ, Butler JH (2011) Nature 476:43

    Article  CAS  Google Scholar 

  16. Popp A, Lotze-Campen H, Bodirsky B (2010) Global Environ Change. 20:451

    Article  Google Scholar 

  17. Knof, Liebigs L, Liebigs J (1962) J Ann Chem Soc 656:40

    Google Scholar 

  18. Robuttom GM, Boeckman RK, Ramaiah M, Medwid JB (1978) Tetrahedon Lett 4603

  19. Reed SM, Hutchinson JEJ (2000) Chem Ed 77:1627

    Article  CAS  Google Scholar 

  20. Trost BM (1991) Science 254:1471

    Article  CAS  Google Scholar 

  21. Trost BM (1995) Angew Chem Int Ed 34:259

    Article  CAS  Google Scholar 

  22. Sheldon RA (2007) Green Chem 9:1273

    Article  CAS  Google Scholar 

  23. Sheldon RA (2008) Chem Commun 29:3352

    Article  Google Scholar 

  24. Goor G, Strukul G, Kluwer G (1992) Dordrecht: Catalytic Oxidations with Hydrogen Peroxide as Oxidant, vol 13. Springer, New York

    Google Scholar 

  25. Sato K, Aoki A, Noyori R (1998) Science 281:1646

    Article  CAS  Google Scholar 

  26. Venturello C, Alneri E, Ricci M (1983) J Org Chem 43:3831

    Article  Google Scholar 

  27. Aellig C, Scholz D, Hermans I (2012) Chem Sus Chem 5:1732

    Article  CAS  Google Scholar 

  28. Cavani F, Teles JH (2009) Chem Sus Chem 2:508

    Article  CAS  Google Scholar 

  29. Teles JH, Rossler BR, Pinkos T, Genger, Preiss T. (2008) US Patent, 2008/0275276 A1, BASF SE, 2008

  30. Tanaka K, Shimizu A, JP 20011,253,845 (assigned to Asahi Chem Co)

  31. Teles JH, ¨bler-Feigel B Ro, Hauk A, Meier A, Mu¨ller C, Schelper M, Kirchner T. Szeschkus S, Pinkos R and Tebben G.-D., US Patent, 8,188,320, BASF SE, 2012

  32. Parmon VN, Panov GI, Uriarte A, Noskov AS (2005) Catal Today 100:115

    Article  CAS  Google Scholar 

  33. Notte P (2000) Top. Catal 13:3874

    Article  Google Scholar 

  34. Kubanek P, Wchterlova B, Sobalik. Z (2002) J. Catal. 211:109

    CAS  Google Scholar 

  35. Picataggio S and Beardslee T (2012) US Patent 2012/0021474 A1, Verdezyne, Inc., 2012

  36. Beardslee T, Picataggio S (2012) Lipid Technol 24:223

    Article  CAS  Google Scholar 

  37. Sato K, Aoki M, Ogawa M, Hashimoto T, Noyori R (1996) J Org Chem 61:8310

    Article  CAS  Google Scholar 

  38. Sato K (1997) Bull Chem Soc Jpn 70:905

    Article  CAS  Google Scholar 

  39. Sato K, Aoki M, Takagi J, Noyori R (1997) J Am Chem Soc 119:12386

    Article  CAS  Google Scholar 

  40. Lu X-H, Luan H-X, Lei J, Zhang J-L, Yu A-A, Zhou D, Xia Q-H (2012) Ind J Chem 51:420

    Google Scholar 

  41. Schuchardt U, Pereira R, Krahembuh R, Krahembuhl CEZ, Rufo M, Buffon R (1995) Appl Catal A Gen 131:135

    Article  CAS  Google Scholar 

  42. Al-Shammari A, Köckritz A, Narayana VK, Martin A, Bagabs, Less AA (2012) European Patent, 2441747 A1, Apr 18, 2012

  43. Al-Shammari A, Kockritz A, Kalevaru VN, Bagabas AA, Martin A (2012) Appl Petrochem Res 2:61

    Article  CAS  Google Scholar 

  44. Dugal M, Sankar G, Raja R (2000) Angew Chem Int Ed 39:2310

    Article  CAS  Google Scholar 

  45. Patra AK, Dutta A, Bhaumik A (2013) Chem Eur J 19:12388

    Article  CAS  Google Scholar 

  46. Dutta A, Pramanik M, Patra AK, Nandi M, Uyama H, Bhaumik A (2012) Chem Commun 48:6738

    Article  CAS  Google Scholar 

  47. Cheng C-Y, Lin K-J, Prasad MR, Fu S-J, Chang S-Y, Shyu S-G, Sheu H-S, Chen C-H, Chuang C-H, Lin M-T (2007) Catal Commun 8:1060

    Article  CAS  Google Scholar 

  48. Zhu W, Li H, He X, Zhang Q, Shu H, Yan Y (2008) Catal Commun 9:551

    Article  CAS  Google Scholar 

  49. Vafaeezadeh M, Hashemi MM, Shakourian-Fard M (2012) Catal Commun 26:54

    Article  CAS  Google Scholar 

  50. Li H, Zhu W, He X, Zhang Q, Pan J, Yan Y (2007) React Kinet Catal Lett 92:319

    Article  CAS  Google Scholar 

  51. Fujitani K, Mizutani T, Oida T, Kawase T (2009) J Oleo Sci 58:37

    Article  CAS  Google Scholar 

  52. Jin P, Zhao Z, Dai Z, Wei D, Tang M, Wang X (2011) Catal Today 175:619

    Article  CAS  Google Scholar 

  53. Wei H, Li H, Liu Y, Jin P, Wang X, Li B (2012) ACS Appl Mater Interfaces 4:4106

    Article  CAS  Google Scholar 

  54. Yao CS, Weng HS (1998) Ind Eng Chem Res 37:2647

    Article  CAS  Google Scholar 

  55. Tavoularis G, Keane MA (1999) J Mol Cat A 142:187

    Article  CAS  Google Scholar 

  56. Lesbani A, Mohadi R (2015) Indones J Chem 15:64

    CAS  Google Scholar 

  57. Rahman A, Ali I, Al-Zahrani SM, Eleithy RH (2011) Nano 6:185

    Article  CAS  Google Scholar 

  58. Rahman A, Deyab Salem S-Al (2014) Appl Cat A: General 469:517

    Article  CAS  Google Scholar 

  59. Rahman A, Jonnalagadda SB (2008) Catalysis Lett 123:264

    Article  CAS  Google Scholar 

  60. Rahman A, Pullabhotla VSSR, Jonnalagadda SB (2008) Catal Commun 9:2417

    Article  CAS  Google Scholar 

  61. Choudary BM, Kantam ML, Rahman A, Reddy CVR, Rao KRR (2001) Angew Chem Int Ed 40:763

    Article  CAS  Google Scholar 

  62. Deng Y, Ma Z, Wang K, Chen J (1999) Green Chem 1:275

    Article  CAS  Google Scholar 

  63. Jiang H, Gong H, Yang Z, Ziang X, Sun Z (2002) Catalysis Lett 75:315

    CAS  Google Scholar 

  64. Karimi B, Ghoreishi-Nezhad M, Clark JH (2005) Org Lett 7:625

    Article  CAS  Google Scholar 

  65. Gregori F, Nobili I, Bigi F, Maggi R, Predieri G, Sartori G (2008) J. Mol Cat A: Chem 286:124

    Article  CAS  Google Scholar 

  66. Podgorsek A, Zupan M, Iskra J (2009) Angew Chem Int Ed 48:8424

    Article  CAS  Google Scholar 

  67. Quesada P, Isariebel L, Cognet G, Martine P (2012) Chem Engg Jour. doi:10.1016/j.cej.2012.06.041

    Google Scholar 

  68. Markus D, Bernhard G, Kappe CO (2013) Chem Sus Chem 6:978

    Article  Google Scholar 

  69. Li Z-P, Wan L (2013) Asian J Chem 25:6008

    Google Scholar 

  70. Devika S, Muthiahpillai P, Muruesan VJ (2011) Mol Cat A: Chem 351:136

    Article  CAS  Google Scholar 

  71. Par CM, Goroff N, (1993) US Patent, 1993 5,221,800 (assigned to Amoco Corp)

  72. Noack H, Georgiev V, Johannson JA, Blomberg MRA, Siegbahn PEM (2009) Thesis, Stockholm University, Stockholm

  73. Raabova K (2010) New catalytic processes for the synthesis of adipic acid. PhD thesis, University of Bologna

  74. Zhao R, Ji D, Lv G, Qian L, Yan X, Wang X, Suo J (2004) Chem Commun 7:904

    Article  Google Scholar 

  75. Lu G, Zhao R, Qian G (2004) Catal Letters 97:115

    Article  Google Scholar 

  76. Wang H-L, Li R, Zheng YF, Chen HN, Jin J, Wang FS, Ma JT (2007) Helvet Chim Acta 90:1837

    Article  CAS  Google Scholar 

  77. Zhao R, Wang Y (2006) Green Chem 5:459

    Article  Google Scholar 

  78. Teresa Á-M, Ana BP, Dubravka S, Joaquín PP, Luis GH (2014) J Phys Chem C 118:4835

    Article  Google Scholar 

  79. Subrahmanyam Ch, Viswanathan B (2004) J Mol Cat A 223:149

    Article  CAS  Google Scholar 

  80. Sankar G, Raja R (1998) Catal Letters 55:15

    Article  CAS  Google Scholar 

  81. Dugal M, Sankar G, Raja R, Thomas J (2000) Angew Chem Int Ed 39:2307

    Article  Google Scholar 

  82. Raja R, Sankar G, Thomas J (1999) J Am Chem Soc 121:11926

    Article  CAS  Google Scholar 

  83. Li J, Li X, Yong S, Dongsen M, Guanzhong L (2010) Catal Letters 137:180

    Article  CAS  Google Scholar 

  84. Laha SC, Glaser R (2007) Microporous Mesoporous Mater 99:159

    Article  CAS  Google Scholar 

  85. Qian G, Ji D, Lu G, Zhao R, Qi Y, Suo J (2005) J Catal 232:378

    Article  CAS  Google Scholar 

  86. Yuan H-X, Xia Q-H, Zhan H-J (2006) Appl Catal A 304:178

    Article  CAS  Google Scholar 

  87. Hao J, Liu B, Haiyang C, Qiang W, Jinyao W, Shuxia C, Fengyu Z (2009) Chem Commun 23:3460

    Article  Google Scholar 

  88. Liu L, Li Y (2009) Angew Chem Int Ed 48:2206

    Article  CAS  Google Scholar 

  89. Sheldon R, Isabel Arends A, Hanefeld UIF (2007) Green chemistry catalysis. Wiley, New York

    Book  Google Scholar 

  90. Scarso A, Strukul G (2009) Science of Synthesis. In: Berkessel A (ed) Peroxides, vol 38. Thieme G, Stuttgart, p 9

    Google Scholar 

  91. Ganeshpure A, Tembe GL, Satish S (1996) J Mol Catal A: Chem 113:L423

    Article  CAS  Google Scholar 

  92. Kim J, Harrison RG, Kim C, Que L Jr (1995) J Am Chem Soc 118:4373

    Article  Google Scholar 

  93. Chauvel AB, Delmon WF (1994) Holderich Appl Catal A 115:173–217

    Article  CAS  Google Scholar 

  94. Parton RF, Thibault-Starzyk F, Reynders RA, Grobet PJ, Jacobs PA, Bezoukhanova CP, Sun W, Wu Y (1995) J Mol Cat A 97:183

    Article  CAS  Google Scholar 

  95. Rudy FP, Ivo FJV, Mark JAC, Cvetana PB, Jan BU, Peter A (1994) Nature 370:541

    Article  Google Scholar 

  96. Starzyk T, Parton F, Jacobs PA (1994) Stud Surf Sci Catal 84:1419

    Article  Google Scholar 

  97. Parton RF, Peere GJ, Neys PE, Jacobs PA, Claessens R, Baron GV (1996) J Mol Catal A 113:445–454

    Article  CAS  Google Scholar 

  98. Jr Balkus K J, Eissa M, Lavado R (1995) J Am Chem Soc 117:10753

    Article  Google Scholar 

  99. Jr Balkus K J, Eissa M, Lavado R (1995) Stud Surf Sci Catal 94:713

    Article  Google Scholar 

  100. Herron N, Stucky GD, Tolman CAJ (1986) Chem Soc Chem Commun 20:1521

    Article  Google Scholar 

  101. Raja R, Ratnasamy P (1997) Catal Letters 48:1

    Article  CAS  Google Scholar 

  102. Raja R, Ratnasamy P (1998) US Patent 5,767,320, 1998

  103. Polen et al (2013) J Biotechnol 167:75

    Article  CAS  Google Scholar 

  104. Zhang H, Li X, Su X, Ang EL, Zhang Y, Zhao H, In: Society for Industrial Microbiology & Biotechnology Conference Dates: August 02-06, (2015), Philadelphia, PA

  105. Ritter SK (2014) Chem Eng News 92:6

    Google Scholar 

  106. BREW Project - Medium and long-term opportunities and risks of the biotechnological production of bulk chemicals from renewable resources. http://brew.geo.uu.nl/

  107. Deng Y, Mao YJ (2015) Appl Microbiol 119:1057

    Article  CAS  Google Scholar 

  108. Hwang KC, Arunachalam S (2014) Science 346:1495

    Article  CAS  Google Scholar 

  109. Beth M (2015) Science news magazine of the society for science and the public. Magazine issue, 187: 13

  110. Solmi S, Rozhko E, Malmusi A, Cavani F (2014) Selective oxidation and functionalization: classical and alternative routes and sources. In: DGMK conference October 13–15, Berlin

  111. Li X, Wu D, Lu T, Yi G, H Su, Zhang Y (2014) Angew Chem Int Edn 53:4200

    Article  CAS  Google Scholar 

  112. Murphy JJ, Melchiorre P (2015) Nature 524:297

    Article  CAS  Google Scholar 

  113. McFiggans G (2014) Nature 506:442

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledges the Chairman Department of Chemistry, Dean of faculty of science, director post graduate research and Vice Chancellor of Bindura University of Science Education for constant encouragement in research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ateeq Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A., Mupa, M. & Mahamadi, C. A Mini Review on New Emerging Trends for the Synthesis of Adipic Acid from Metal-Nano Heterogeneous Catalysts. Catal Lett 146, 788–799 (2016). https://doi.org/10.1007/s10562-015-1682-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1682-5

Keywords

Navigation