Skip to main content
Log in

Understanding the Role of Tantalum in Heteropoly Tungstate Catalysts for the Synthesis of Glycerol Carbonate from Glycerol and Urea

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Tantalum exchanged tungstophosphoric acid (TaxTPA) catalysts were prepared and studied for the synthesis of glycerol carbonate from glycerol and urea. These catalysts were characterized by FT-IR, X-ray diffraction, Laser Raman, pyridine adsorbed FT-IR and temperature programmed desorption of ammonia. The characterization results indicate that the Keggin ion structure of tungstophosphoric acid (TPA) is intact. The activity towards the synthesis of GC over the TaxTPA catalysts depended on the number of Ta5+ ions exchanged in the secondary structure of heteropoly tungstate. Presence of Ta in TPA leads to the generation of Lewis acidic sites. Catalysts with partially exchanged Ta with the protons of TPA showed high activity due to the presence of both Brønsted and Lewis acidic sites. Different reaction parameters such as reaction temperature, glycerol to urea molar ratio and catalyst loading were studied and optimum conditions were established. These catalysts exhibited reusability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lertlukkanasuka N, Phiyanalinmatb S, Kiatkittipongc W, Arpornwichanopa A, Aiouached F, Assabumrungrata S (2013) Chem Eng Process 70:103–109

    Article  Google Scholar 

  2. Zhou CHC, Beltramini JN, Fan YX, Lu GQM (2008) Chem Soc Rev 37:527–549

    Article  Google Scholar 

  3. Hammond C, Lopez-Sanchez JA, Ab Rahim MH, Dimitratos N, Jenkins RL, Carley AF, He Q, Kiely CJ, Knighta DW, Hutchings GJ (2011) Dalton Trans 40:3927–3937

    Article  Google Scholar 

  4. Dimitratos N, Sanchez JAL, Hutchings GJ (2009) Top Catal 52:258–268

    Article  CAS  Google Scholar 

  5. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD (2007) Angew Chem Int Ed 46:4434–4440

    Article  CAS  Google Scholar 

  6. Carrettin S, McMorn P, Johnston P, Griffin K, Hutchings GJ (2002) Chem Commun 7:696–697

    Article  Google Scholar 

  7. Bianchi CL, Canton P, Dimitratos N, Porta F, Prati L (2005) Catal Today 102–103:203–212

    Article  Google Scholar 

  8. Dimitratos N, Sanchez JAL, Anthonykutty JM, Brett G, Carley AF, Tiruvalam RC, Herzing AA, Kiely CJ, Knight DW, Hutchings GJ (2009) Phys Chem Chem Phys 11:4952–4961

    Article  CAS  Google Scholar 

  9. Balaraju M, Rekha V, Sai Prasad PS, Prasad RBN, Lingaiah N (2008) Catal Lett 126:119–124

    Article  CAS  Google Scholar 

  10. Balaraju M, Nikhitha P, Jagadeeswaraiah K, Srilatha K, Sai Prasad PS, Lingaiah N (2010) Fuel Process Technol 91:249–253

    Article  CAS  Google Scholar 

  11. Mizuno T, Nakai T, Mihara M (2010) Heteroat Chem 21:541–545

    Article  CAS  Google Scholar 

  12. Hu J, Li J, Gu Y, Guan Z, Mo W, Ni Y, Li T, Li G (2010) Appl Catal A 386:188–193

    Article  CAS  Google Scholar 

  13. Jagadeeswaraiaha K, Ramesh Kumara CH, Sai Prasad PS, Loridant S, Lingaiaha N (2014) Appl Catal A 469:165–172

    Article  Google Scholar 

  14. Kovvali AS, Sirkar KK (2002) Ind Eng Chem Res 41:2287–2295

    Article  CAS  Google Scholar 

  15. Parameswaram G, Srinivas M, Hari Babu B, Sai Prasad PS, Lingaiah N (2013) Catal Sci Technol 3:3242–3249

    Article  CAS  Google Scholar 

  16. Selva M, Fabris M (2009) Green Chem 11:1161–1172

    Article  CAS  Google Scholar 

  17. Ghandi M, Mostashari A, Karegar M, Barzegar MJ (2007) Am Oil Chem Soc 84:681–685

    Article  CAS  Google Scholar 

  18. Rokicki G, Rokoczy P, Parzuchowski P, Sobiecki M (2005) Green Chem 7:529–539

    Article  CAS  Google Scholar 

  19. Plasman V, Caulier T, Boulos N (2005) Plast Addit Compd 7:30–33

    Article  CAS  Google Scholar 

  20. Aresta M, Dibenedetto A, Nocito F, Ferragina C (2009) J Catal 268:106–114

    Article  CAS  Google Scholar 

  21. Randall D, De Vos R, Eu. Pat., EP 419114, 1991 to Imperial Chemical Industries, PLC, UK

  22. Weuthen M, Hees U Ger. Pat DE 4335947, 1995 to Henkel K.-G.a.A. Germany

  23. McKetta JJ, Cunningham WA (1984) Encyclopedia of chemical processing and design, vol 20. Marcel Decker, New York, p 177

    Google Scholar 

  24. Vieville C, Yoo JW, Pelet S, Mouloungui Z (1998) Catal Lett 56:245–247

    Article  CAS  Google Scholar 

  25. Patel Y, George J, Pillai SM, Munshi P (2009) Green Chem 11:1056–1060

    Article  CAS  Google Scholar 

  26. Sugita A, Sone Y, Kaeryama M (1994) JP Patent 06329663

  27. Dibenedetto A, Angelini A, Aresta M, Ethiraj J, Fragale C, Nocito F (2011) Tetrahedron 67:1308–1313

    Article  CAS  Google Scholar 

  28. Li JB, Wang T (2011) J Chem Thermodyn 43:731–736

    Article  CAS  Google Scholar 

  29. Sasa T, Okutsu M, Uno M (2009) JP Pat. 2007-234982 2009067689

  30. Yoo JW, Mouloungui Z, Park SE, Ryoo R, Ahn WS, Lee CW, Chang JS (2003) Nanotechnol Mesostruct Mater 146:757–760

    CAS  Google Scholar 

  31. Okutsu M, Kitsuki T (2000) WO Pat 2000-JP1072 2000050415

  32. Okutsu M (2005) JP Pat 222721 2010040768, 2007

  33. Wang L, Ma Y, Wang Y, Liu S, Deng Y (2011) Catal Commun 12:1458–1462

    Article  CAS  Google Scholar 

  34. Ab Rahim MH, He Q, Lopez-Sanchez JA, Hammond C, Dimitratos N, Sankar M, Carley AF, Kiely CJ, Knighta DW, Hutchings GJ (2012) Catal Sci Technol 2:1914–1924

    Article  Google Scholar 

  35. Rubio-Marcos F, Calvino-Casilda V, Banares MA, Fernandez JF (2010) J Catal 275:288–293

    Article  CAS  Google Scholar 

  36. Climent MJ, Corma A, De Frutose P, Iborra S, Noy M, Velty A, Concepcion P (2010) J Catal 269:140–149

    Article  CAS  Google Scholar 

  37. Turney TW, Patti A, Gates W, Shaheena U, Kulasegarama S (2013) Green Chem 15:1925–1931

    Article  CAS  Google Scholar 

  38. Fujita S, Yamanishi Y, Arai M (2013) J Catal 297:137–141

    Article  CAS  Google Scholar 

  39. Okuhara T, Mizuno N, Misono M (2001) Appl Catal A 222:63–77

    Article  CAS  Google Scholar 

  40. Misono M, Ono I, Koyano G, Aoshima A (2000) Pure Appl Chem 72:1305–1311

    Article  CAS  Google Scholar 

  41. Dias JA, Caliman E, Dias SCL, Paulo M, De Souza ATCP (2003) Catal Today 85:39–48

    Article  CAS  Google Scholar 

  42. Bachiller-Baeza B, Anderson JA (2004) J Catal 228:225–233

    Article  CAS  Google Scholar 

  43. Busca G (2002) J Raman Spectrosc 33:348–358

    Article  CAS  Google Scholar 

  44. Devassy BM, Halligudi SB (2005) J Catal 236:313–323

    Article  CAS  Google Scholar 

  45. Yang XK, Chen LF, Wang JA, Norena LE, Novaro O (2009) Catal Today 148:160–168

    Article  CAS  Google Scholar 

  46. Misono M (2001) Chem Commun 13:1141–1152

    Article  Google Scholar 

Download references

Acknowledgments

M. Sharath Babu thanks Department of Chemistry, Osmania University. The authors thank Council of Scientific and Industrial Research (CSIR), New Delhi for the financial support in the form of Indus Magic (CSC-0123) project under 12th Five Year Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lingaiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharath Babu, M., Srivani, A., Parameswaram, G. et al. Understanding the Role of Tantalum in Heteropoly Tungstate Catalysts for the Synthesis of Glycerol Carbonate from Glycerol and Urea. Catal Lett 145, 1784–1791 (2015). https://doi.org/10.1007/s10562-015-1582-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1582-8

Keywords

Navigation