Skip to main content
Log in

Catalytic Hydrodeoxygenation of Guaiacol as Lignin Model Component Using Ni-Mo/TiO2 and Ni-V/TiO2 Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalytic hydrodeoxygenation of guaiacol (2-methoxy phenol), an oxygen rich lignin model compound, has been investigated aiming at the elucidation of active catalysts for production of deoxygenated products. All catalysts were synthesized by impregnation technique. Screening of different catalysts unveiled Ni-Mo/TiO2 as the most active catalyst. Ni-Mo/TiO2 was compared with Ni-V/TiO2 to understand the influence of promoter (Mo and V); nevertheless, Ni-V/TiO2 produced no positive effect compared to Ni-Mo/TiO2. Structural investigation was performed using XRD, TEM, BET surface area and TPD measurements. As evidenced by XRD and TEM, all catalysts composed of nano-sized particles. Ni-Mo/TiO2 showed small sized finely dispersed particles, on the other hand large particles and loss of dispersion noted for Ni-V/TiO2 and Ni/TiO2, respectively. BET surface area measurement depicted Ni-Mo/TiO2 catalyst presented high surface area with optimal mesopores than Ni-V/TiO2. The NH3-TPD data revealed that Ni-Mo/TiO2 acidic strength is higher than the Ni-V/TiO2. Influence of catalysts and reaction variables were investigated using both Ni-Mo/TiO2 and Ni-V/TiO2 to determine their potential role on guaiacol conversion. High activity of Ni-Mo/TiO2 during wide range of conditions could be attributed to: (i) small sized and finely dispersed active metal particles, (ii) more mesopores, and (iii) high acidic strength. Water as a solvent, showed no impact on Ni-V/TiO2 performance, while on Ni-Mo/TiO2, guaiacol conversion and phenol selectivity inclined to decrease.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Serrano-Ruiz JC, Dumesic JA (2011) Energy Environ Sci 4:83

    Article  CAS  Google Scholar 

  2. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044

    Article  CAS  Google Scholar 

  3. Elliott DC (2007) Energy Fuels 21:1792

    Article  CAS  Google Scholar 

  4. Choudhary TV, Phillips CB (2011) Appl Catal A 397:1

    Article  CAS  Google Scholar 

  5. Bridgwater AV, Peacocke GVC (2000) Renew Sustain Energy Rev 4:1

    Article  CAS  Google Scholar 

  6. Wang H, Male J, Wang Y (2013) ACS Catal 3:1047

    Article  CAS  Google Scholar 

  7. Anex RP, Aden A, Kazi FK, Fortman J, Swanson RM, Wright MM, Satrio JA, Brown RC, Daugaard DE, Platon A, Kothandaraman G, Hsu DD, Dutta A (2010) Fuel 89(Supplement 1):S29

    Article  CAS  Google Scholar 

  8. Ruddy DA, Schaidle JA, Ferrell Iii JR, Wang J, Moens L, Hensley JE (2014) Green Chem 16:454

    Article  CAS  Google Scholar 

  9. Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA (2009) Angew Chem 121:4047

    Article  Google Scholar 

  10. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) Chem Rev 110:3552

    Article  CAS  Google Scholar 

  11. Hong Y-K, Lee D-W, Eom H-J, Lee K-Y (2014) J Mol Catal A 392:241

    Article  CAS  Google Scholar 

  12. Zhao C, Lercher JA (2012) Angew Chem Int Ed 51:5935

    Article  CAS  Google Scholar 

  13. Bui VN, Laurenti D, Delichère P, Geantet C (2011) Appl Catal B: Environ 101:246

    Article  CAS  Google Scholar 

  14. Bui VN, Laurenti D, Afanasiev P, Geantet C (2011) Appl Catal B: Environ 101:239

    Article  CAS  Google Scholar 

  15. Lin Y-C, Li C-L, Wan H-P, Lee H-T, Liu C-F (2011) Energy Fuels 25:890

    Article  CAS  Google Scholar 

  16. Zhu X, Lobban LL, Mallinson RG, Resasco DE (2011) J Catal 281:21

    Article  CAS  Google Scholar 

  17. Gutierrez A, Kaila RK, Honkela ML, Slioor R, Krause AOI (2009) Catal Today 147:239

    Article  CAS  Google Scholar 

  18. Nimmanwudipong T, Runnebaum R, Block D, Gates B (2011) Catal Lett 141:779

    Article  CAS  Google Scholar 

  19. Elliott DC, Hart TR (2008) Energy Fuels 23:631

    Article  Google Scholar 

  20. Ohta H, Kobayashi H, Hara K, Fukuoka A (2011) Chem Commun 47:12209

    Article  CAS  Google Scholar 

  21. Zhao HY, Li D, Bui P, Oyama ST (2011) Appl Catal A 391:305

    Article  CAS  Google Scholar 

  22. Yan N, Yuan Y, Dykeman R, Kou Y, Dyson PJ (2010) Angew Chem Int Ed 49:5549

    Article  CAS  Google Scholar 

  23. Olcese RN, Bettahar M, Petitjean D, Malaman B, Giovanella F, Dufour A (2012) Appl Catal B 115–116:63

    Article  Google Scholar 

  24. Wang X, Rinaldi R (2012) ChemSusChem 5:1335

    Article  CAS  Google Scholar 

  25. He Z, Wang X (2012) Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading. Catal Sustain Energy 1:28–52

    Google Scholar 

  26. Bridgwater AV (1996) Catal Today 29:285

    Article  CAS  Google Scholar 

  27. Escalona N, Aranzaez W, Leiva K, Martínez N, Pecchi G (2014) Appl Catal A 481:1

    Article  CAS  Google Scholar 

  28. Olcese R, Bettahar MM, Malaman B, Ghanbaja J, Tibavizco L, Petitjean D, Dufour A (2013) Appl Catal B 129:528

    Article  CAS  Google Scholar 

  29. Wu S-K, Lai P-C, Lin Y-C (2014) Catal Lett 144:878

    Article  CAS  Google Scholar 

  30. Liu C, Wang H, Karim AM, Sun J, Wang Y (2014) Chem Soc Rev 43:7594

    Article  CAS  Google Scholar 

  31. Saidi M, Samimi F, Karimipourfard D, Nimmanwudipong T, Gates BC, Rahimpour MR (2014) Energy Environ Sci 7:103

    Article  CAS  Google Scholar 

  32. Yue C-J, Zhang Q-Y, Gu L-P, Su Y, Zhu S-P (2014) Asia Pac J Chem Eng 9:581

    CAS  Google Scholar 

  33. Bathe SR, Patil PS (2014) J Mater 2014:5

    Google Scholar 

  34. Ricci PC, Carbonaro CM, Stagi L, Salis M, Casu A, Enzo S, Delogu F (2013) J Phys Chem C 117:7850

    Article  CAS  Google Scholar 

  35. Nogueira NAS, da Silva EB, Jardim PM, Sasaki JM (2007) Mater Lett 61:4743

    Article  CAS  Google Scholar 

  36. Selvaraj M, Shanthi K, Maheswari R, Ramanathan A (2014) Energy Fuels 28:2598

    Article  CAS  Google Scholar 

  37. Chandra Mouli K, Mohanty S, Hu Y, Dalai A, Adjaye J (2013) Catal Today 207:133

    Article  CAS  Google Scholar 

  38. Cheng FY, Chen J, Gou XL (2006) Adv Mater 18:2561

    Article  CAS  Google Scholar 

  39. Yang Y, Ochoa-Hernández C, de la Peña O’Shea VA, Pizarro P, Coronado JM, Serrano DP (2014) Appl Catal B 145:91

    Article  Google Scholar 

  40. Kim SD, Baek SC, Lee Y-J, Jun K-W, Kim MJ, Yoo IS (2006) Appl Catal A 309:139

    Article  CAS  Google Scholar 

  41. Fang K, Ren J, Sun Y (2005) J Mol Catal A 229:51

    Article  CAS  Google Scholar 

  42. Zhang X, Zhang Q, Chen L, Xu Y, Wang T, Ma L (2014) Chin J Catal 35:302

    Article  Google Scholar 

  43. González-Borja MÁ, Resasco DE (2011) Energy Fuels 25:4155

    Article  Google Scholar 

  44. Sun J, Karim AM, Zhang H, Kovarik L, Li XS, Hensley AJ, McEwen J-S, Wang Y (2013) J Catal 306:47

    Article  CAS  Google Scholar 

  45. Nimmanwudipong T, Aydin C, Lu J, Runnebaum R, Brodwater K, Browning N, Block D, Gates B (2012) Catal Lett 142:1190

    Article  CAS  Google Scholar 

  46. Olcese RN, Bettahar M, Petitjean D, Malaman B, Giovanella F, Dufour A (2012) Appl Catal B 115–116:63

    Article  Google Scholar 

  47. Sepúlveda C, García R, Reyes P, Ghampson IT, Fierro JLG, Laurenti D, Vrinat M, Escalona N (2014) Appl Catal A 475:427

    Article  Google Scholar 

  48. Furimsky E (2000) Appl Catal A 199:147

    Article  CAS  Google Scholar 

  49. Jin S, Xiao Z, Li C, Chen X, Wang L, Xing J, Li W, Liang C (2014) Catal Today 234:125

    Article  CAS  Google Scholar 

  50. Leiva K, Sepúlveda C, García R, Fierro JLG, Escalona N (2014) Catal Commun 53:33

    Article  CAS  Google Scholar 

  51. Halász I, Gáti G (1979) React Kinet Catal Lett 12:411

    Article  Google Scholar 

  52. Prasomsri T, Nimmanwudipong T, Roman-Leshkov Y (2013) Energy Environ Sci 6:1732

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the financial support of the Natural Science and Engineering Research Council of Canada (NSERC). Lakshmi Katta thank university's Eyes High Program for the Postdoctoral Fellowship. The authors also thank Ludivine Gras for her contribution in the reaction part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Mahinpey.

Additional information

A. Aqsha and L. Katta contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aqsha, A., Katta, L. & Mahinpey, N. Catalytic Hydrodeoxygenation of Guaiacol as Lignin Model Component Using Ni-Mo/TiO2 and Ni-V/TiO2 Catalysts. Catal Lett 145, 1351–1363 (2015). https://doi.org/10.1007/s10562-015-1530-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1530-7

Keywords

Navigation