Skip to main content
Log in

Factors Controlling the Acidity of Zeolites

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Most industrial applications of zeolites as catalysts rely on their Brönsted acidity properties. However, neither quantifying acid strength in solids nor correlating acidity with catalytic activity is straightforward. The ease and speed at which the proton transfer process occurs in zeolites depends on different factors, including the concentration of active sites and local geometry around them, the ability of base molecules to diffuse through channels and cavities close to the acid sites, and the stabilization of ionic transition states and intermediates by electrostatic interactions with the zeolite framework. All these aspects are analyzed in this review based on experimental characterization data (FTIR spectroscopy of hydroxyl groups and adsorbed probe molecules, in situ MAS-NMR of reactants and intermediates, TPD and microcalorimetry of adsorbed probe molecules) and computational studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3

Similar content being viewed by others

References

  1. Corma A (1997) Chem Rev 97:2373–2419

    Article  CAS  Google Scholar 

  2. Clerici MG (2000) Top Catal 13:373–386

    Article  CAS  Google Scholar 

  3. Corma A (2003) J Catal 216:298–312

    Article  CAS  Google Scholar 

  4. Haw F, Song W, Marcus DM, Nicholas JB (2003) Acc Chem Res 36:317–326

    Article  CAS  Google Scholar 

  5. Bahn A, Iglesia E (2008) Acc Chem Res 41:559–567

    Article  Google Scholar 

  6. Yilmaz B, Müller U (2009) Top Catal 52:888–895

    Article  CAS  Google Scholar 

  7. Martínez C, Corma A (2011) Coord Chem Rev 255:1558–1580

    Article  Google Scholar 

  8. Cejka J, Centi G, Pérez-Pariente J, Roth WJ (2012) Catal Today 179:2–15

    Article  CAS  Google Scholar 

  9. Corma A (1995) Chem Rev 95:559–614

    Article  CAS  Google Scholar 

  10. Farneth WE, Gorte RJ (1995) Chem Rev 95:615–635

    Article  CAS  Google Scholar 

  11. Van Santen RA, Kramer GJ (1995) Chem Rev 95:637–660

    Article  Google Scholar 

  12. Cejka J, van Bekkum H, Corma A, Schüth F (2007) Introduction to Zeolite Molecular Sieves, 3rd edn. Elsevier, Amsterdam, pp 1–1094

    Google Scholar 

  13. Wang W, Hunger M (2008) Acc Chem Res 41:895–904

    Article  CAS  Google Scholar 

  14. Derouane EG, Védrine JC, Ramos Pinto R, Borges PM, Costa L, Lemos MANDA, Lemos F, Ramôa Ribeiro F (2013) Catal Rev 55:454–515

    Article  CAS  Google Scholar 

  15. Sauer J (1989) Chem Rev 89:199–255

    Article  CAS  Google Scholar 

  16. Brönsted J (1928) Chem Rev 5:231–338

    Article  Google Scholar 

  17. Strodel P, Neyman KM, Knözinger H, Rösch N (1995) Chem Phys Lett 240:547–552

    Article  CAS  Google Scholar 

  18. Chatterjee A, Iwasaki T, Ebina T, Miyamoto A (1998) Microp Mesop Mater 21:421–428

    Article  CAS  Google Scholar 

  19. Yuan SP, Wang JG, Li YW, Jiao H (2002) J Phys Chem A 106:8167–8172

    Article  CAS  Google Scholar 

  20. Brand HV, Curtiss LA, Iton LE (1993) J Phys Chem 97:12773–12782

    Article  CAS  Google Scholar 

  21. Brand HV, Curtiss LA, Iton LE (1992) J Phys Chem 96:7725–7732

    Article  CAS  Google Scholar 

  22. Kassab E, Seiti K, Allavena M (1998) J Phys Chem 92:6705–6709

    Article  Google Scholar 

  23. Jones AJ, Carr RT, Zones SI, Iglesia E (2014) J Catal 3121:58–68

    Article  Google Scholar 

  24. Jungsuttiwong S, Lomratsiri J, Limtrakul J (2011) Int J Q Chem 111:2275–2282

    Article  CAS  Google Scholar 

  25. Sauer J, Schröder J, Temath K-PV (1998) Coll Czech Chem Commun 63:1394–1408

    Article  CAS  Google Scholar 

  26. Sauer J, Sierka M (2000) J Comput Chem 21:1470–1493

    Article  CAS  Google Scholar 

  27. Haase F, Sauer J (2000) Micr Mesop Mater 35–36:379–385

    Article  Google Scholar 

  28. Eichler U, Brändle M, Sauer J (1997) J Phys Chem B 101:10035–10050

    Article  CAS  Google Scholar 

  29. Brändle M, Sauer J (1998) J Am Chem Soc 120:1556–1570

    Article  Google Scholar 

  30. Lercher JA, Jentys A (2007) Infrared and Raman spectroscopy for characterizing zeolites. In: van Bekkum H, Cejka J, Corma A, Schüth F (eds) Introduction to zeolite science and practice, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  31. Klinowski J (1991) Chem Rev 91:1459–1479

    Article  CAS  Google Scholar 

  32. Knözinger H, Huber SJ (1998) Chem Soc Faraday Trans 94:2047–2059

    Article  Google Scholar 

  33. Jacobs PA, von Ballmoos R (1982) J Phys Chem 86:3050–3052

    Article  CAS  Google Scholar 

  34. Biaglow AI, Parrillo DJ, Gorte RJ (1993) J Catal 144:193–201

    Article  CAS  Google Scholar 

  35. Aufdembrink BA, Dee DP, McDaniel PL, Mebrahtu T, Slager TL (2003) J Phys Chem B 107:10025–10031

    Article  CAS  Google Scholar 

  36. van Well VJM, Cottin X, de Haan JW, Smit B, Nivarthy G, Lercher JA, van Hooff JHC, van Santen RA (1998) J Phys Chem B 102:3945–3951

    Article  Google Scholar 

  37. van Well VJM, Cottin X, Smit B, van Hooff JHC, van Santen RA (1998) J Phys Chem B 102:3952–3958

    Article  Google Scholar 

  38. Marie O, Massiani P, Thibault-Starzyk F (2004) J Phys Chem B 108:5073–5081

    Article  CAS  Google Scholar 

  39. Bhan A, Allian AD, Sunley GJ, Law DJ, Iglesia E (2007) J Am Chem Soc 129:4919–4924

    Article  CAS  Google Scholar 

  40. Bevilacqua M, Busca G (2002) Catal Commun 3:497–502

    Article  CAS  Google Scholar 

  41. Jacobs PA, Mortier JW (1982) Zeolites 2:226–230

    Article  CAS  Google Scholar 

  42. Kazansky VB, Serykh AI, Semmer-Herledan V, Fraissard J (2003) Phys Chem Chem Phys 5:966–969

    Article  CAS  Google Scholar 

  43. Cardona-Martinez N, Dumesic JA (1990) J Catal 125:427–444

    Article  CAS  Google Scholar 

  44. Auroux A (2002) Top Catal 19:205–213

    Article  CAS  Google Scholar 

  45. Auroux A (2008) Mol Sieves 6:45–152

    Article  CAS  Google Scholar 

  46. Rodríguez-González L, Hermes F, Bertmer M, Rodríguez-Castellón E, Jiménez-López A, Simon U (2007) Appl Catal A Gen 328:174–182

    Article  Google Scholar 

  47. Niwa M, Katada N (2013) Chem Rec 13:432–455

    Article  CAS  Google Scholar 

  48. Niwa M, Nishikawa S, Katada N (2005) Microporous Mesoporous Mater 82:105–112

    Article  CAS  Google Scholar 

  49. Suzuki K, Noda T, Katada N, Niwa M (2007) J Catal 250:151–160

    Article  CAS  Google Scholar 

  50. Zecchina A, Otero Arean C (1996) Chem Soc Rev 25:187–197

    Article  CAS  Google Scholar 

  51. Knözinger H (1997) In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of Heterogeneous Catalysis, vol 2. VCH, Weinheim, p 707

    Google Scholar 

  52. Hadjiivanov K, Vayssilov G (2002) Adv Catal 47:307–511

    CAS  Google Scholar 

  53. Frash MV, Makarova MA, Rigby AM (1997) J Phys Chem B 101:2116–2119

    Article  CAS  Google Scholar 

  54. Boscoboinik JA, Yu X, Emmez E, Yang B, Shaikhutdinov S, Fischer FD, Sauer J, Freund HJ (2013) J Phys Chem C 117:13547–13556

    Article  CAS  Google Scholar 

  55. Garrone E, Otero Arean C (2005) Chem Soc Rev 34:846–857

    Article  CAS  Google Scholar 

  56. Nachtigall P, Delgado MR, Nachtigallova D, Otero Arean C (2012) Phys Chem Chem Phys 14:1552–1569

    Article  CAS  Google Scholar 

  57. Otero Arean C, Delgado MR, Nachtigall P, Thang HV, Rubes M, Bulanek R, Chlubna-Eliasova P (2014) Phys Chem Chem Phys 16:10129–10141

    Article  Google Scholar 

  58. Nesterenko NS, Thibault-Starzyk F, Montouillout V, Yushchenko VV, Fernandez C, Gilson JP, Fajula F, Ivanova I (2006) Kinet Catal 47:40–48

    Article  CAS  Google Scholar 

  59. Jacobs PA (1977) Carbonigenic activity of zeolites. Elsevier, New York

    Google Scholar 

  60. Tanabe K, Misono M, Ono Y, Hattori H (1989) New solid acids and bases. Elsevier, New York

    Google Scholar 

  61. Corma A, Planelles J, Sánchez-Marin J, Tomás F (1985) J Catal 93:30–37

    Article  CAS  Google Scholar 

  62. Boronat M, Corma A (2008) Appl Catal A 336:2–10

    Article  CAS  Google Scholar 

  63. Haw JF, Nicholas JB, Xu T, Beck LW, Ferguson DB (1996) Acc Chem Res 29:259–267

    Article  CAS  Google Scholar 

  64. Haw JF (2002) Phys Chem Chem Phys 4:5431–5441

    Article  CAS  Google Scholar 

  65. Yang S, Kondo JN, Domen K (2002) Catal Today 73:113–125

    Article  CAS  Google Scholar 

  66. Aronson MT, Gorte RJ, Farneth WE, White D (1989) J Am Chem Soc 111:840–846

    Article  CAS  Google Scholar 

  67. Kazansky VB (1991) Acc Chem Res 24:379–383

    Article  Google Scholar 

  68. Kazansky VB, Frash MV, Van Santen RA (1996) Appl Catal A 146:225–247

    Article  CAS  Google Scholar 

  69. Rigby AM, Kramer GJ, Van Santen RAJ (1997) Catal A 170:1–10

    CAS  Google Scholar 

  70. Sinclair PE, de Vries A, Sherwood P, Catlow CRA, Van Santen RAJ (1998) Chem Soc Faraday Trans 94:3401–3408

    Article  CAS  Google Scholar 

  71. Boronat M, Zicovich-Wilson CM, Viruela PM, Corma A (2001) J Phys Chem B 105:11169–11177

    Article  CAS  Google Scholar 

  72. Rozanska X, Demuth Th, Hutschka F, Hafner J, Van Santen RA (2002) J Phys Chem B 106:3248–3254

    Article  CAS  Google Scholar 

  73. Rozanska X, Van Santen RA, Demuth Th, Hutschka F, Hafner J (2003) J Phys Chem B 107:1309–1315

    Article  CAS  Google Scholar 

  74. Boronat M, Viruela PM, Corma A (2004) J Am Chem Soc 126:3300–3309

    Article  CAS  Google Scholar 

  75. Tuma C, Sauer J (2005) Angew Chem Int Ed 44:4769–4771

    Article  CAS  Google Scholar 

  76. Nieminen V, Sierka M, Murzin DY, Sauer J (2005) J Catal 231:393–404

    Article  CAS  Google Scholar 

  77. Ivanova II, Corma A (1997) J Phys Chem B 101:547–551

    Article  CAS  Google Scholar 

  78. Wang W, Seiler M, Ivanova I, Weitkamp J, Hunger M. Chem Commun 2001, 1362–1363

  79. Wang W, Seiler M, Hunger M (2001) J Phys Chem B 105:12553–12558

    Article  CAS  Google Scholar 

  80. Wang W, Buchholz A, Seiler M, Hunger M (2003) J Am Chem Soc 125:15260–15267

    Article  CAS  Google Scholar 

  81. Jiang Y, Hunger M, Wang W (2006) J Am Chem Soc 128:11679–11692

    Article  CAS  Google Scholar 

  82. Cheung P, Bhan A, Sunley GJ, Law DJ, Iglesia E (2007) J Catal 245:110–123

    Article  CAS  Google Scholar 

  83. Stöcker M (1999) Microporous Mesoporous Mater 29:3–48

    Article  Google Scholar 

  84. Keil FJ (1999) Microporous Mesoporous Mater 29:49–66

    Article  CAS  Google Scholar 

  85. Dahl IM, Kolboe S (1994) J Catal 149:458–464

    Article  CAS  Google Scholar 

  86. Dahl IM, Kolboe S (1996) J Catal 161:304–309

    Article  CAS  Google Scholar 

  87. Haw JF, Nicholas JB, Song W, Deng F, Wang Z, Xu T, Heneghan CS (2000) J Am Chem Soc 122:4763–4775

    Article  CAS  Google Scholar 

  88. Arstad B, Nicholas JB, Haw F (2004) J Am Chem Soc 126:2991–3001

    Article  CAS  Google Scholar 

  89. Lesthaeghe D, Van Speybroeck V, Marin GB, Waroquier M (2006) Angew Chem Int Ed 45:1714–1719

    Article  CAS  Google Scholar 

  90. Collins SJ, O’Malley PJ (1995) J Catal 153:94–99

    Article  CAS  Google Scholar 

  91. Blaszkowski SR, Nascimento MAC, van Santen RA (1996) J Phys Chem 100:3463–3472

    Article  CAS  Google Scholar 

  92. Boronat M, Viruela PM, Corma A (2000) Phys Chem Chem Phys 2:3327–3333

    Article  CAS  Google Scholar 

  93. Gounder R, Iglesia E (2009) J Am Chem Soc 131:1958–1971

    Article  CAS  Google Scholar 

  94. Gounder R, Jones AJ, Carr RT, Iglesia E (2012) J Catal 286:214–223

    Article  CAS  Google Scholar 

  95. Gounder R, Iglesia E (2012) Acc Chem Res 45:229–238

    Article  CAS  Google Scholar 

  96. Fujimoto K, Shikada T, Omata K, Tominaga H (1984) Chem Lett 12:2047–2050

    Article  Google Scholar 

  97. Cheung P, Bhan A, Sunley GJ, Iglesia E (2006) Angew Chem Int Ed 45:1617–1620

    Article  CAS  Google Scholar 

  98. Lezcano-González I, Vidal-Moya JA, Boronat M, Blasco T, Corma A (2013) Angew Chem Int Ed 52:5138–5141

    Article  Google Scholar 

  99. Boronat M, Martínez C, Law D, Corma A (2008) J Am Chem Soc 130:16316–16323

    Article  CAS  Google Scholar 

  100. Boronat M, Martínez C, Corma A (2011) Phys Chem Chem Phys 13:2603–2612

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Spanish Science and Innovation Ministry (Consolider Ingenio 2010-MULTICAT CSD2009-00050 Project and Subprograma de apoyo a Centros y Universidades de Excelencia Severo Ochoa SEV 2012 0267) and Generalitat Valenciana (PROMETEOII/2013/011 Project) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avelino Corma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boronat, M., Corma, A. Factors Controlling the Acidity of Zeolites. Catal Lett 145, 162–172 (2015). https://doi.org/10.1007/s10562-014-1438-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1438-7

Keywords

Navigation